ta có:
(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc
=a3+b3+c3+(3a2b+3a2c+3abc)+(3b2a+3b2c+3abc)+(3c2a+3c2b+3abc)-3abc
=a3+b3+c3+3a.(ab+ac+bc)+3b(ab+ac+bc)+3c.(ab+ac+bc)-3abc
=a3+b3+c3+3.(a+b+c)(ab+ac+bc)-3abc
=>03=a3+b3+c3+3.0.(ab+ac+bc)-3abc
0=a3+b3+c3-3abc
<=>a3 + b3 + c3 = 3abc
a + b + c = 0 => a + b = -c
TA có
a^3 + b^3 + c^3 = ( a+ b)^3 - 3ab . ( a+ b) + c^3
Thay a +b = -c ta có
a^3 + b^3 + c^3 = -c^3 - 3ab.(-c) + c^3 = 3abc (ĐPCM)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)