a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD
nên \(CM\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE
nên \(CN\cdot CE=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD
nên \(CM\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE
nên \(CN\cdot CE=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)
Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của CD, CE. Chứng minh:
a, CD. CM = CE. CN
b, Tam giác CMN đồng dạng với tam giác CED
Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu
của H lên CD, CE. Chứng minh:
a. CD.CM = CE.CN.
b. Tam giác CMN đồng dạng với tam giác CED.
Tạm giác CDE nhọn đường cao CH gọi M và N là hình chiếu của H trên CD,CE
a) cm : CD.CM=CE.CN
b)cm tam giác CMN đồng dạng tam giác CED
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a.AM.AB=AN.AC
b.Chứng minh tam giác AMN đồng dạng tam giác ACB
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o (ab<ac) và ah là đường cao của tam giác.gọi m,n lần lượt là hình chiếu vuông góc của h lên ab,ac.kẽ ne vuông góc với ah.đường thẳng vuông góc với ac kẻ từ c cắt tia ah tại d và ad cắt đường tròn tại f.i là giao điểm của cd và (o).cm:a)góc abc+góc acb= góc bic và tứ giác denc nội tiếp.b)am.ab=an.ac và tứ giác bfic là hình thang cân.c)tứ giác bmed nội tiếp
Cho ∆ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H đến AB, AC. C/m: hai tam giác AMN và ACB đồng dạng
Cho tam giác nhọn ABC, AH là đường cao.
a/Chứng minh \(AB^2+CH^2=AC^2+BH^2\)
b/Gọi M, N theo thứ tự là hình chiếu của H trên AB và AC. Chứng minh \(\widehat{AMN}=\widehat{ACB}\)