Ta có: \(\Delta=m^2+8>0\) nên phương trình luôn có 2 nghiệm phân biệt.
Giờ ta tìm điều kiện để phương trình có 2 nghiệm thỏa mãn
\(\orbr{\begin{cases}x_1< x_2\le-1\\x_1>x_2\ge1\end{cases}}\)
TH 1: \(x_1< x_2\le-1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(-1\right)^2+m-1\right)\ge0\\\frac{m}{4}< -1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\ge-1\\m< -4\end{cases}}\) không có m thỏa mãn
TH 2: \(x_1>x_2\ge1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(1\right)^2-m-1\right)\ge0\\\frac{m}{4}>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\le1\\m>4\end{cases}}\) không có m thỏa mãn
Vậy với mọi m thì phương trình luôn tồn tại ít nhất 1 nghiệm thỏa mãn
\(-1< x< 1\) hay \(|x|< 1\)