Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lương Song Hoành

Cho (x+y+z)^2= x^2+y^2+z^2  CMR: 1/x^3+1/y^3+1/z^3= 3/xyz

Trần Thị Hà Giang
26 tháng 8 2018 lúc 15:31

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

        \(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zy\right)=x^2+y^2+z^2\)

        \(\Rightarrow2\left(xy+yz+zx\right)=0\)

        \(\Rightarrow xy+yz+zx=0\)

        \(\Rightarrow\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0\)( Chia 2 vế cho xyz )

        \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

        \(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

Ta lại có : \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-\left(\frac{3}{x^2y}+\frac{3}{xy^2}\right)+\frac{1}{z^3}\)

               \(=\left(-\frac{1}{z}\right)^3-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}\)

                \(=-\frac{3}{xy}\cdot-\frac{1}{z}\)\(=\frac{3}{xyz}\)

                 \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)         ( đpcm )

alibaba nguyễn
27 tháng 8 2018 lúc 10:09

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Ta lại co:

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Doraemon
28 tháng 8 2018 lúc 14:26

Ta có:

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Ta lại có:

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)


Các câu hỏi tương tự
Hoàng Thế Hải
Xem chi tiết
Lê Vũ Nhã Linh
Xem chi tiết
Nguyễn Ngọc Mai
Xem chi tiết
Bùi Nguyễn Đức Huy
Xem chi tiết
Đỗ Nguyễn Hiền Thảo
Xem chi tiết
Minh Quang
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
Hoàng Phúc
Xem chi tiết
nguyễn phúc khang
Xem chi tiết