Ta có: `x+y=a+b`
`\Leftrightarrow (x+y)^2=(a+b)^2`
`\Leftrightarrow x^2+2xy+y^2=a^+2ab+b^2`
`\Leftrightarrow 2xy=2ab` (vì `x^2+y^2=a^2+b^2`)
`\Leftrightarrow xy=ab`
Khi đó: `x^3+y^3=(x+y)(x^2-xy+y^2)`
`=(a+b)(a^2-ab+b^2)=a^3+b^3` (đpcm)
Ta có: `x+y=a+b`
`\Leftrightarrow (x+y)^2=(a+b)^2`
`\Leftrightarrow x^2+2xy+y^2=a^+2ab+b^2`
`\Leftrightarrow 2xy=2ab` (vì `x^2+y^2=a^2+b^2`)
`\Leftrightarrow xy=ab`
Khi đó: `x^3+y^3=(x+y)(x^2-xy+y^2)`
`=(a+b)(a^2-ab+b^2)=a^3+b^3` (đpcm)
1. Chứng minh các đẳng thức :
a) (x + y)^2 - y^2 = x(x + 2y)
b) (x^2 + y^2) - (2xy)^2 = (x + y)^2 . (x - y)^2
c) (x + y)^3 = x(x - 3y)^2 + y(y - 3x)^2
2.Chứng minh rằng :
a) (a + b)^3 + (a - b)^3 = 2a(a^2 + 3b^2)
b) (a + b)^3 - (a - b)^3 = 2b(b^2 + 3a^2)
GIÚP MK VS Ạ!!!!!!! MK VIẾT HƠI KHÓ ĐỌC TÍ
Cho x+y=a+b ;x2+y2=a2+b2. Chứng minh rằng: x3+y3=a3+b3
Mọi người giúp mình bài này với
Bài 1 : (a+b)^2 = 2(a+b)^2. Chứng minh rằng a= b
Bài 2: Cho a^2 - b^2= 4c^2. Chứng minh rằng (5a-3b+8c) (5a-3b-8c) = (3a-5b)
Bài 3 : Cho x +y = 1. Tính giá trị của x^3 +y^3+ 3xy
Bài 4: Cho x-y = 1. Tính giá trị của x^3-y^3- 3xy
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
1/ Tính giá trị nhỏ nhất (hoặc lớn nhất) của các biểu thức sau:
a, C= 3x^2 - 4x/ 1 + x^2 với mọi x.
b, D= x^2 + y^2 - x + 6y + 10 với mọi x, y.
2/ Tìm các số x và y, biết: x^3 + y^3 = 152; x^2 - xy = 19 và x - y = 2
3/ Cho x + y = 2; x^2 + y^2 = 20. Tính x^3 + y^3
4/ Cho a^2 + b^2 = 1. Chứng minh rằng: a^6 + 3.a^2.b^2 + b^6 = 1
Bài 1: Cho x + y = -3 và x.y = -28. Tính giá trị các biểu thức sau theo m,n.
a) x^2 + y^2 b) x^3 + y^3 c) x^4 + y^4
Bài 2: Chứng minh rằng:
a) a^2 + b^2 + c^2 +d^2 >_ ab+ac+ad
b) a^2 + 4b^2 +4c^2 >_ 4ab - 4ac + 8bc
Bài 3: Chứng minh rằng:
Nếu x + y + z = 0 thì x^3 + y^3 + z^ 3 = 3xyz
Bài 4: Chứng minh : a^2 + 4b^2 + 4c^2 >_ 4ab - 4ac + 8bc
( Viết về dạng bình phương của một tổng)
GIÚP MÌNH VỚI Ạ!!!!!!!!!!!!
1, Tìm giá trị lớn nhất
A=x^3-2x^2-2x+3
2, Cho x+y=3, x.y=2
Tính x^5+y^5
3, Cho a^2+b^2+c=ab+ac+bc
Chứng minh rằng a=b=c
a) cho x+y = a và x-y =b, tìm x3 + y3 .
b) cho x = y+2 và xy =2, chứng minh x4 + y4 = 2x2(x+1) -2y2(y-1)
c) cho a+b = a3 +b3 =1, chứng minh a2 + b2 = a4 +b4
Chứng minh các bất đẳng thức:
1. Cho a + b + c = o. Chứng minh rằng a3+ b3 + c3 = 3abc
2. Cho a , b , c là độ dài ba cạnh tam giác. Chứng minh rằng:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) < 2
3.Chứng minh rằng : x5 + y5 ≥ x4y + xy4 với x, y ≠ 0 và x + y ≥ o
Ps: Help me!