Cho tam giác XYZ vuông tại X, đường cao XK, XY là 12cm,XZ=20cm. Tính YK,XK
Cho x,y là các số thực dương thỏa mãn x+y=2 và hằng số k \(k\in Z^+.CMR:x^ky^k\left(x^k+y^k\right)\le2\).Hình như dùng quy nạp thì phải
Cho x,y là các số thực dương thỏa mãn x+y=2 và hằng số k \(k\in Z^+.CMR:x^ky^k\left(x^k+y^k\right)\le2\).Hình như dùng quy nạp thì phải
cho x,y,z,t,k là các số nguyên thỏa x+y+z+t+k chia hết cho 5
cmr \(x^5+y^5+z^5+t^5+k^5\)chia hết cho 5
Cho 3 số thực x,y,z,dương và x+y+z=1
CMR: \(\sqrt{x+2y}+\sqrt{y+2x}+\sqrt{z+2x}\le3\)\(\le3\)
DÙNG CÔNG THỨC HAY HẰNG ĐẲNG THỨC NÀO THÌ GHI CÔNG THỨC TỔNG QUÁT RA GIÚP MK NHA
mk thanks trc
Cho các số x,y,z,t,k>0. Chứng minh rằng x^2/(x^2+yz) + y^2/(y^2+zt) + z^2/(z^2+tk) + t^2/(t^2+kx) + k^2/(k^2+xy) < 4
1) Cho hệ phương trình:
(k+1)x + (3k+1)y = 2-k
(2x + (k+2)y = 4. Tìm k để x và y thuộc Z
2) giải pt
a) x² - 4x - 6= √2x²-8x-12
b) (4x+1)(12x-1)(3x+2)(x+1)=4
1.Cho \(a=\frac{x+k}{x-k};b=\frac{y+k}{y-k};c=\frac{z+k}{z-k}\)
Tính \(Q=ab+bc+ca\)
2. Cho x, y, z thuộc R với x, y, z khác -1
Tính \(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{xz+2x+1}{xz+x+z+1}\)
3. Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Tính \(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Cho x, y, z >0 và \(x^2+y^2+z^2=3\). CMR \(\frac{2x^2}{x+y^2}+\frac{2y^2}{y+z^2}+\frac{2z^2}{z+x^2}\ge x+y+z\)