Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Vậy: \(x^3+3xy+y^3=1\)