\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.
\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.
Cho \(x\ne0\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{2016x^2-2x+1}{x^2}\)
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Tìm giá trị nhỏ nhất của biểu thức (x khác 1) \(\dfrac{2x^2-8x+17}{x^2-2x+1}\)
Tìm giá trị nhỏ nhất của biểu thức: A=\(\frac{2016x+3780}{x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2016x+3780}{x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức M=\(\frac{2016x+1512}{x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{x^2-2x+2007}{2007x^2}\left(x\ne0\right)\)
Tìm giá trị nhỏ nhất của biểu thức M =\(\dfrac{x^2+x+1}{x^2+2x+1}\) (với\(x\ne-1\))