Ta có: \(\left[\left(\frac{1}{9}\right)^2+\left(2\right)^2\right]\left(9x^2+y^2\right)\ge\left(x+2y\right)^2=1\)
Suy ra \(9x^2+y^2\ge\frac{9}{19}\)
P/s: đúng ko ta? Dạo này hay tính nhầm lắm:(
tth_new
\(\left[\left(\frac{1}{3}\right)^2+2^2\right]\left(9x^2+y^2\right)\ge\left(x+2y\right)^2=1\)\(\Leftrightarrow\)\(9x^2+y^2\ge\frac{9}{37}\)
Dấu "=" xảy ra khi \(\frac{\frac{1}{9}}{x}=\frac{4}{2y}=\frac{\frac{1}{9}+4}{x+2y}=\frac{37}{9}\)\(\Rightarrow\)\(x=\frac{1}{37};y=\frac{18}{37}\)