Đặt A = x3 + y3 + xy
= (x + y)(x2 - xy + y2) + xy
= x2 - xy + y2 + xy (Vì x + y = 1)
= x2 + y2
Lại có x +y = 1
=> x = 1 - y
Khi đó A = x2 + y2
= (1 - y)2 + y2
= 1 - 2y + y2 + y2
= 2y2 - 2y +1 = \(2\left(y^2-y+\frac{1}{2}\right)=2\left(y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{1}{4}\right)=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
Vậy Min A = \(\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)