a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
b) ✱Xét Δ ABD có :
AM = BM ( gt )
AQ = DQ ( gt )
⇒ QM là đg trung bình của Δ ABD
⇒ MQ = 1/2 BD
✱Xét Δ BDC có :
BN = CN ( gt )
DP = PC ( gt )
⇒ NP là đg trung bình Δ BDC
⇒ NP = 1/2 BD
Ta có :
Chu vi tg MNPQ là:
MN + NP + PQ + QM ⇔ 1/2 AC + 1/2 BD + 1/2 AC + 1/2 BD
⇔ MN + NP + PQ + QM = AC + BD
Mà AC và BD là đg chéo của tg ABCD
⇒ Chu vi tg MNPQ = tổng 2 đg chéo tg ABCD
Đó , m ghi vô ii ko mai thầy chửi sấp mặt đấy !