Cho tứ diện ABCD. Hỏi có bao nhiêu vectơ khác vectơ 0 → mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD
A. 12
B. 4
C. 10
D. 8
Cho tứ diện ABCD, hỏi có bao nhiêu véctơ khác véctơ 0 → mà mỗi véctơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD
A. 4.
B. 12.
C. 10.
D. 8.
Cho tứ giác ABCD. Trên các cạnh AB,BC,CA,AD lần lượt lấy 3; 4; 5; 6 điểm phân biệt khác các điểm A, B, C, D. Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
A. 781
B. 624
C. 816
D. 342
Cho tứ giác ABCD. Trên các cạnh AB, BC, CD, AD lần lượt lấy 3, 4, 5, 6 điểm phân biệt khác các điểm A, B, C, D. Hỏi có thể tạo thành bao nhiêu tam giác phân biệt từ các điểm vừa lấy?
A. 342
B. 781
C. 624
D. 816
Số véctơ khác 0 → có điểm đầu và điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là
A. P 6
B. 36
C. C 6 2
D. A 6 2
Số véc- tơ khác 0 → có điểm đầu, điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là
A. P 6
B. C 6 2
C. A 6 2
D. 36
Cho các Parabol có các đỉnh lần lượt là I1, I2. Gọi A, B là giao điểm của (P1) và Ox. Biết rằng 4 điểm A, B, I1, I2 tạo thành tứ giác lồi có diện tích bằng 10. Tính diện tích S của tam giác IAB với I là đỉnh của Parabol
(P): y = h x = f x + g x
P 1 : y = f x = 1 4 x 2 - x , P 2 : y = g x = a x 2 - 4 a x + b a > 0
A.S=6
B.S=4
C.S=9
D.S=7
Cho tứ diện ABCD có A B = a , A C = a 2 , A D = a 3 , các tam giác ABC, ACD, ABD là các tam giác vuông tại đỉnh A. Khoảng cách d từ điểm A đến mặt phẳng (BCD) là
A. d = a 66 11
B. d = a 6 3
C. d = a 30 5
D. d = a 3 2
Cho tứ diện ABCD có A B = a , A C = a 2 , A D = a 3 các tam giác ABC,ACD, ABD là các tam giác vuông tại đỉnh A. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD).
A. d = a 6 3
B. d = a 30 5
C. d = a 3 2
D. d = a 66 11