Đáp án là B
Mỗi cạnh của tứ diện tạo thành 2 vecto thỏa mãn đề bài, suy ra có 6.2 = 12 vecto.
Đáp án là B
Mỗi cạnh của tứ diện tạo thành 2 vecto thỏa mãn đề bài, suy ra có 6.2 = 12 vecto.
Cho tứ diện ABCD. Hỏi có bao nhiêu vectơ khác vectơ 0 → mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD
A. 12
B. 4
C. 10
D. 8
Số véctơ khác 0 → có điểm đầu và điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là
A. P 6
B. 36
C. C 6 2
D. A 6 2
Cho tứ giác ABCD. Có bao nhiêu vector (khác 0 ⇀ ) có điểm đầu và điểm cuối là các đỉnh của tứ giác.
A. 8
B. 12
C. 6.
D. 4
Từ 10 điểm phân biệt trong mặt phẳng, có thể tạo ra bao nhiêu véctơ khác véctơ 0 → ?
A. A 10 2 .
B. 20
C. 2 10 .
D. C 10 2 .
Cho hai véctơ phân biệt và bằng nhau. Có bao nhiêu phép tịnh tiến khác nhau biến véctơ này thành vecto kia?
A. Vô số
B. 0
C. 2
D. 1
Trong không gian Oxyz, cho hai mặt cầu S 1 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z + 2 = 0 và S 2 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z - 4 = 0 . Xét tứ diện ABCD có hai đỉnh A,B nằm trên (S1); hai đỉnh C,D nằm trên (S2 ). Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng
A. 3 2
B. 2 3
C. 6 3
D. 6 2
Cho tứ diện ABCD có AC=AD=BC=BD, AB=a, CD= a 3 Khoảng cách giữa hai đường thẳng AB và CD bằng a . Tính khoảng cách h từ điểm cách đều 4 đỉnh A,B,C,D đến mỗi đỉnh đó
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4
Cho tứ diện ABCD có A B = A D = B C = B D , A B = a , C D = a 30 . Khoảng cách giữa hai đường thẳng AB và CD bằng a. Tính khoảng cách h từ điểm cách đều 4 đỉnh A, B, C, D đến mỗi đỉnh đó.
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4
Cho tứ diện ABCD cạnh 2a. Tính thể tích của khối bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện ABCD.
A. a 3 2 6
B. a 3 2
C. a 3 2 3
D. 2 a 3 2 9