Cho tứ diện S.ABC. Gọi I trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng α song song (SIC). Thiết diện tạo bởi α với tứ diện S.ABC là
A. Hình bình hành
B. Tam giác cân tại M
C. Tam giác đều
D. Hình thoi
Cho tứ diện đều S.ABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng α song song với S C I . Tính chu vi của thiết diện tạo bởi α và tứ diện S.ABC tính theo A M = a .
A. a 1 + 3
B. 2 a 1 + 3
C. 3 a 1 + 3
D.Không tính được
Cho hình chóp S . A B C có M là điểm di động trên cạnh SA sao cho S M S A = k . Gọi (α) là mặt phẳng đi qua M và song song với mặt phẳng A B C . Tìm k để mặt phẳng (α) cắt hình chóp S . A B C theo một thiết diện có diện tích bằng một nửa diện tích tam giác ABC.
A. k = 2 2 .
B. k = 1 2 .
C. k = 3 2 .
D. k = 1 3 .
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C, CH vuông góc tại H, I là trung điểm của HC. Biết SI vuông góc với mặt phẳng đáy, Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C, CH vuông góc tại H, I là trung điểm của HC. Biết SI vuông góc với mặt phẳng đáy, . Gọi O là trung điểm của đoạn AB, O' là tâm mặt cầu ngoài tiếp tứ diện SABI. Góc tạo bởi đường thẳng OO' và mặt phẳng (ABC) là. Gọi O là trung điểm của đoạn AB, O' là tâm mặt cầu ngoài tiếp tứ diện SABI. Góc tạo bởi đường thẳng OO' và mặt phẳng (ABC) là
A. 45 ° A S B ^ = 90 °
B. 90 °
C. 30 °
D. 60 °
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, S A = a 3 , S B = 2 a Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi phẳng (P)?
A. 5 a 2 3 18
B. 5 a 2 3 6
C. 4 a 2 3 9
D. 4 a 2 3 3
Cho hình chóp S.ABC có đáy ABC vuông cân tại B với AB = a, SA = a 3 và SA ⊥ (ABC). Gọi M là điểm trên cạnh AB và AM = x (0 < x < a), mặt phẳng ( α ) đi qua M và vuông góc với AB. Tìm x để diện tích thiết diện tạo bởi mặt phẳng ( α ) và hình chóp S.ABC lớn nhất
A. x = a 3
B. x = a 4
C. x = 2 a 3
D. x = a 2
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 1, AC = 2; cạnh bên SA vuông góc với đáy và SA = 1. Gọi I là trung điểm của AC. Xét M là điểm thay đổi trên cạnh AB sao cho A M = x 0 < x < 1 và (P) là mặt phẳng đi qua M, song song với SA và IB. Thiết diện của hình chóp với mặt phẳng (P) có diện tích lớn nhất thì giá trị của x bằng.
A. 2 3
B. 3 4
C. 1 3
D. 1 2
Cho tứ diện ABCD có AB = a, CD = b. Gọi I, J lần lượt là trung điểm của AB và CD, giả sử A B ⊥ C D . Mặt phẳng α qua M nằm trên đoạn IJ và song song với AB và CD. Tính diện tích thiết diện của tứ diện ABCD với mặt phẳng α biết I M = 1 3 I J
A. ab
B. a b 9
C. 2ab
D. 2 a b 9
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD//BC), BC=2a, AB=AD=DC=a với a>0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x>0; M khác O và D. Mặt phẳng (α) đi qua (α) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
A. a 3 4
B. a 3
C. a 3 2
D. a