Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cosα bằng
A. 2 6
B. 2 4
C. 3 6
D. 3 4
Cho tứ diện đều ABCD có cạnh bằng a, M là trung điểm của cạnh BC. Gọi α là góc giữa hai đường thẳng AB và DM, khi đó c o s α cbằng
A . 3 6
B . 2 2
C . 3 2
D . 1 2
Cho tứ diện ABCD có A B = C D = 2 3 . Gọi M và N lần lượt là trung điểm các cạnh AC, BD. Biết rằng MN = 3. Số đo góc hợp bởi hai đường thẳng AB, CD bằng
A. 30 °
B. 60 °
C. 90 °
D. 45 °
Cho tứ diện ABCD có A B = C D = a , A C = B D = b , A D = B C = c . Gọi α là số đo của góc hợp bởi hai đường thẳng AB, CD. Khi đó cos α bằng
A. b 2 - c 2 a 2
B. b 2 - c 2 2 a 2
C. a 2 2 b 2 + c 2
D. a 2 b 2 + c 2
Cho tứ diện đều ABCD cạnh AB=1. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, AD. Tính khoảng cách giữa hai đường thẳng CM và NP.
A. 10 10
B. 10 20
C. 3 10 10
D. 3 10 20
Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của của các cạnh CD và AB thỏa mãn BD:CD:PQ:AB = 3:4:5:6 . Gọi φ là góc giữa hai đường thẳng AB và CD. Giá trị của cosφ bằng
A. 7/8.
B. 1/2.
C. 11/16.
D. 1/4.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD = 3a, BC = CD = 4a; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho AM = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cosα bằng
A. 5 5
B. 6 3
C. 2 3
D. 6 6
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của AA’, B’C’. Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng (AC’H). Khi đó cosα bằng
A. 77 11
B. 22 11
C. 2 5 5
D. 5 5
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm cạnh SC. Gọi α là số đo của góc hợp bởi hai đường thẳng AM và SB. Khi đó cosα bằng
A. 5 10
B. 5 5
C. 5 4
D. 5 15