Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203
Trong không gian Oxyz, cho đường thẳng d: x - 2 1 = y - 1 - 2 = z - 1 2 và hai điểm A(3;2;1), B(2;0;4). Gọi ∆ là đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến ∆ là nhỏ nhất. Gọi u → = 2 ; b ; c là một VTCP của ∆. Khi đó , u → bằng
A. 17
B. 5
C. 6
D. 3
Cho điểm M(-4;0;0) và đường thẳng d : x = 1 - t y = - 2 + 3 t z = - 2 t . Gọi H(a;b;c) là hình chiếu vuông góc của M trên d. Khi đó a+b+c bằng
A. 4
B. 3
C. -1
D. 5
Trong không gian Oxyz, cho các điểm A(2 ;1 ;0),B(0 ;4 ;0),C(0,2,-1) Biết đường thẳng ∆ vuông góc với mặt phẳng (ABC) và cắt đường thẳng d : x - 1 2 = y + 1 1 = z - 2 3 tại điểm D(a ;b ;c) thỏa mãn a > 0 và tứ diện ABCD có thể tích bằng 17/6. Tổng a+b+c bằng
A. 5
B. 4
C. 7
D. 6
Cho hình hộp chữ nhật A B C D . A ' B ' C ' D ' có đáy là hình chũ nhật , AB = a, AD = 2, hình chiếu vuông góc của điểm A trên mặt phẳng A ' B ' C ' D ' là trung điểm H của A’D’. Biết rằng AA’ hợp với đáy một góc 60 0 . Gọi α là số đo của góc giữa hai đường thẳng A C , B ' D . Khi đó cos α bằng
A. 1 5
B. 5 10
C. 1 3
D. 10 5
Cho tứ diện ABCD có A B = A D = B C = B D , A B = a , C D = a 30 . Khoảng cách giữa hai đường thẳng AB và CD bằng a. Tính khoảng cách h từ điểm cách đều 4 đỉnh A, B, C, D đến mỗi đỉnh đó.
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4
Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi V 1 là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích V 1 V 2 là
A. 6
B. 2
C. 8
D. 4
Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị C : y = − x 3 + 6 x 2 − 9 x + 2 tại ba điểm phân biệt A,B,C Gọi B',C' lần lượt là hình chiếu vuông góc của B,C lên trục tung. Tìm giá trị dương của m để hình thang BB'C'C có diện tích
A. m=1
B. m = 1 2
C.m=2
D. m = 3 2