Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau A B = 3 , A C = 4 , A D = 5 . Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Tính thể tích tứ diện AMNP.
A. 15 6
B. 20 7
C. 8 3
D. 5 2
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau; A B = 6 a ; A C = 7 a và A D = 4 a . Gọi M, N, P tương ứng là trung điểm các cạnh BC, CD, DB. Tính thể tích V của tứ diện AMNP
A. V = 7 2 a 3
B. V = 7 a 3
C. V = 28 3 a 3
D. V = 14 a 3
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, A B = 6 a , A C = 5 a , A D = 4 a . Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:
A. V = 5 a 3 3 .
B. V = 20 a 3 3 .
C. V = 5 a 3
D. V = 10 a 3
Cho tứ diện (ABCD) có các cạnh AB, AC, AD đôi một vuông góc với nhau, A B = 6 a , A C = 7 a , A D = 8 a . . Gọi M, N, P lần lượt là trung điểm của BC, CD, BD Thể tích khối tứ diện AMNP là:
A. 14 a 2
B. 28 a 2
C. 42 a 2
D. 7 a 2
Cho tứ diện ABCD có các cạnh AB,AC,AD vuông góc với nhau từng đôi một và AB=3a,AC=6a,AD=4a. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CD,BD . Tính thể tích khối đa diện AMNP
A. 3 a 3
B. 12 a 3
C. a 3
D. 2 a 3
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau, biết rằng A B = a , A C = a 2 , A D = a 3 , a > 0 . Thể tích V của khối tứ diện ABCD là:
A. V = 1 3 a 3 6
B. V = 1 6 a 3 6
C. V = 1 2 a 3 6
D. V = 1 9 a 3 6
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau; AB = 3a, AC = 4a, AD = 5a. Gọi M, N, P lần lượt là trọng tâm của tam giác DAB, DBC, DCA. Tính thể tích của khối chóp DMNA theo a.
A. V = 10 a 3 27
B. V = 80 a 3 27
C. V = 20 a 3 27
D. V = 40 a 3 27
Cho tứ diện ABCD có các cạnh BA,BC,BD đôi một vuông góc với nhau, B A = 3 a B C = B D = 2 a . Gọi M,N lần lượt là trung điểm của A B v à A D . Tính thể tích khối chóp
A. V = 8 a 3
B. V = 2 a 3 3
C. V = 3 a 3 2
D. V = a 3
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau. Gọi G 1 ; G 2 ; G 3 G 4 lần lượt là trọng tâm các tam giác ABC;ABD;ACD; và BCD. Biết A B = 6 a ; A C = 9 a ; A D = 12 a . Tính theo a thể tích khối tứ diện G 1 G 2 G 3 G 4 .
A. 4 a 3
B. a 3
C. 108 a 3
D. 36 a 3