Cho tứ diện ABCD có CD = 3. Hai tam giác ACD, BCD có diện tích lần lượt là 15 và 10. Biết thể tích của tứ diện ABCD bằng 20. Tính côtang của góc giữa hai mặt phẳng (ACD) và (BCD).
A. 3 4
B. 3 5
C. 5 3
D. 4 3
Cho tứ diện ABCD có CD = 3. Hai tam giác ACD, BCD có diện tích lần lượt là 15 và 10. Biết thể tích của tứ diện ABCD bằng 20. Tính cotan của góc giữa hai mặt phẳng (ACD) và (BCD)?
A. 3 4
B. 3 5
C. 5 3
D. 4 3
Cho khối tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a. Góc giữa hai mặt phẳng (ABC) và (BCD) bằng 60 ° . Tính thể tích V của khối tứ diện ABCD theo a:
A. V = a 3 8
B. V = a 3 3 16
C. V = a 3 2 8
D. V = a 3 2 12
Cho tứ diện ABCD có D A B ^ = C B D ^ = 90 o ; A B = a ; A C = a 5 ; A B C ^ = 135 o . Biết góc giữa hai mặt phẳng (ABD), (BCD) bằng 30 o . Thể tích của tứ diện ABCD là
A. a 3 2 3 .
B. a 3 2 .
C. a 3 3 2 .
D. a 3 6 .
Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A . 4 π a 3 3 .
B . π a 3 6 .
C . 4 π a 3 .
D . π a 3 3 2 .
Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 2 2
B. 2
C. 2 3 3
D. 6 3
Cho tứ diện ABCD có thể tích V . Gọi M;N;P;Q lần lượt là trọng tâm tam giác A B C , A C D , A B D và BCD . Thể tích khối tứ diện MNPQ bằng:
A. 4V/9
B. V/27
C. V/9
D. 4V/27
Cho tứ diện ABCD có A B = A D = a 2 , B C = B D = a và C A = C D = x . Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 0 .
B. 45 0 .
C. 90 0 .
D. 120 0 .
Cho tứ diện ABCD có hai mặt ABC, BCD là các tam giác đều cạnh a và nằm trong các mặt phẳng vuông góc với nhau. Thể tích của khối tứ diện ABCD là:
A. 3 a 3 8
B. a 3 4
C. a 3 8
D. 3 a 3 4