a: AM vuông góc BD
=>AM vuông góc (BCD)
b: Kẻ DK vuông góc BC
=>BK vuông góc BC
(ABD) vuông góc (BCD)
=>DK vuông góc BA
=>(BCD) vuông góc (ABC)
c: AN là giao tuyến chung của (ABC) và (ANM)
=>MH vuông góc AN
=>MH vuông góc (ABC)
a: AM vuông góc BD
=>AM vuông góc (BCD)
b: Kẻ DK vuông góc BC
=>BK vuông góc BC
(ABD) vuông góc (BCD)
=>DK vuông góc BA
=>(BCD) vuông góc (ABC)
c: AN là giao tuyến chung của (ABC) và (ANM)
=>MH vuông góc AN
=>MH vuông góc (ABC)
Chi tứ diện ABCD , tam giác ABC và ACD cân tại A và B; M là trung điểm của CD.
a) Cm (ACD) ⊥(BCD)
b) Kẻ MH⊥BM chứng minh AH⊥(BCD)
c) Kẻ HK⊥(AM), cm HK⊥(ACD)
Chi tứ diện ABCD , tam giác ABC và ACD cân tại A và B; M là trung điểm của CD.
a) Cm (ACD) ⊥(BCD)
b) Kẻ MH⊥BM chứng minh AH⊥(BCD)
c) Kẻ HK⊥(AM), cm HK⊥(ACD)
Cho tứ diện ABCD ,tam giác BCD vuông tại C ,tam giác ABC cân tại A ,M và N lần lượt là trung điểm của BC và BD .Chứng minh (AMN)vuông góc với (ABC)
Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'.
Chứng minh rằng AB', BM và CD đồng quy tại một điểm.
b) Chứng minh M B ' B A = d t ∆ M C D d t ∆ B C D
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'. Chứng minh rằng M B ' B A + M C ' C A + M D ' D A = 1
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABC)⊥(DFK)
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABE)⊥(ADC)
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (DFK)⊥(ACD)
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm DC, BC. Xác định vị trí tương đối của cặc cặp đường thẳng với mặt phẳng sau
a) MN và (ABD)
b) AM và (BCD)
c) AN và (ABC)
Cho tứ diện ABCD có M, N, P lần lượt là trung tâm tam giác ABC, ACD, ABD
a) Chứng minh (BCD) song song các đường thẳng MN, MP, NP
b) Tìm thiết diện của tứ diện khi cắt bởi (MNP)
Giúp em với em cần gấp cảm ơn
Giải đơn giản và chu tiết