Đáp án C.
Gọi M, N lần lượt là trung điểm của AB và CD
Đáp án C.
Gọi M, N lần lượt là trung điểm của AB và CD
Cho tứ diện ABCD có AB=4a, CD=6a các cạnh còn lại có độ dài bằng a 22 Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD
Cho tứ diện ABCD có AB=2, CD=4 và các cạnh còn lại cùng bằng 6. Tính diện tích mặt cầu ngoại tiếp tứ diện S.ABCD
Cho tứ diện ABCD có tam giác ABC là tam giác cân với BAC= 120 o ,AB=AC=a Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16
Cho tứ diện đều ABCD có cạnh 2a. Tính bán kính r của mặt cầu tiếp xúc với tất cả các mặt của tứ diện.
Cho tứ diện ABCD có ABC là tam giác cân tại A, người ta để một quả cầu có bán kính r = 1 vào bên trong tứ diện từ đáy ABC sao cho các cạnh AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện. Biết khoảng cách từ D đến (ABC) bằng 2. Tính thể tích nhỏ nhất của tứ diện ABCD?
Bán kính của mặt cầu ngoại tiếp tứ diện đều cạnh a là
Cho lăng trụ tam giác đều ABC. A’B’C’ có độ dài cạnh đáy bằng 3a và chiều cao bằng 8a. Tính bán kính R của mặt cầu ngoại tiếp tứ diện AB’C’C.
A. R = 4a.
B. R =5a.
Cho tứ diện đều ABCD có độ dài cạnh bằng a, (S) là mặt cầu tiếp xúc với sáu cạnh của tứ diện ABCD, M là điểm thay đổi trên mặt cầu (S). Tính tổng
T = M A 2 + M B 2 + M C 2 + M D 2
A. 3 a 2 8
B. a 2
C. 4 a 2
D. 2 a 2
Cho tứ diện đều ABCD, A A 1 là một đường cao của tứ diện. Gọi I là trung điểm của A A 1 Mặt phẳng (BCI) chia tứ diện đã cho thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó
A. 43 51
B. 1 2
C. 1 4
D. 48 153