a)Ta có:`MN^2+MP^2=a^2+a^2=2a^2`
`NP^2=2a^2`
`=>MN^2+MP^2=NP^2`
`=>` tam giác MNP vuông cân
b)Xét tam giác vuông cân MNP có:
`MO` là trung tuyến
`=>MO` là đg cao
`=>MO bot NP`
`=>hat{MON}=90^o`
Vì `O` là trung đ NP
`=>NO=OP=(NP)/2=(asqrt2)/2`
`sin\hat{NMO}=(NO)/(MN)=(asqrt2/2)/a=sqrt2/2`
Tương tự với các cái còn lại.
a, do MN=MP=a=>\(\Delta MNP\) cân tại M
b, \(\Delta MNP\) cân tại M có MO là trung tuyến nên đồng thời là đường cao
\(=>MO\perp NP\)=>\(\Delta NOM\) vuông tại O
có: \(NO=\dfrac{NP}{2}=\dfrac{a\sqrt{2}}{2}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\sin\left(NMO\right)=\dfrac{NO}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
theo pytago\(=>OM=\sqrt{MN^2-ON^2}=\sqrt{a^2-\left(\dfrac{a}{\sqrt{2}}\right)^2}\)
\(=\sqrt{a^2-\dfrac{a^2}{2}}=\sqrt{\dfrac{a^2}{2}}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\cos\angle\left(NMO\right)=\dfrac{OM}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
\(=>\tan\angle\left(NMO\right)=\dfrac{ON}{OM}=\dfrac{\dfrac{a}{\sqrt{2}}}{\dfrac{a}{\sqrt{2}}}=1\)
tương tự \(=>\cot\angle\left(NMO\right)=1\)