A đối xứng D qua BC
=>BA=BD và CA=CD
Xét ΔCAB và ΔCDB có
CA=CD
BA=BD
CB chung
=>ΔCAB=ΔCDB
=>góc CDB=góc CAB=90 độ
góc BAC+góc BDC=180 độ
=>BACD nội tiếp
A đối xứng D qua BC
=>BA=BD và CA=CD
Xét ΔCAB và ΔCDB có
CA=CD
BA=BD
CB chung
=>ΔCAB=ΔCDB
=>góc CDB=góc CAB=90 độ
góc BAC+góc BDC=180 độ
=>BACD nội tiếp
Cho tam giasc ABC vuông tại A, gọi D là điểm đối xứng với A qua cạnh BC. Chứng minh tứ giác ABCD nội tiếp.
Giusp em với ạ!!!!!!!!!!
cho tam giác abc vuông tại a (AC>AB) gọi h là hình chiếu vuông góc của A trên cạnh BC , D là điểm đối xứng của B qua H và K là hình chiếu vuông góc của C trên đường thẳng AD
a) chứng minh AHKC là tứ giác nội tiếp
b) chứng minh HK.AC= AB.HC
Cho tam giác ABC, gọi D, E theo thứ tự là tiếp điểm của đường tròn (I) nội tiếp tam giác với các cạnh BC, CA. Gọi K là điểm đối xứng của D qua trung điểm cạnh BC. Đường thẳng qua K vuông góc với BC cắt DE tại L. Gọi N là trung điểm của KL. Chứng minh rằng BN vuông góc với AK.
Cho tam giác ABC, gọi D, E theo thứ tự là tiếp điểm của đường tròn (I) nội tiếp tam giác với các cạnh BC, CA. Gọi K là điểm đối xứng của D qua trung điểm cạnh BC. Đường thẳng qua K vuông góc với BC cắt DE tại L. Gọi N là trung điểm của KL. Chứng minh rằng BN vuông góc với AK.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
a, Chứng minh BA.BC =2.BD. BE
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
b) CD đi qua trung điểm của đường cao AH của tam giác ABC .
Cho tam giác ABC và M là trung điểm BC. Tiếp tuyến tại B của đường tròn ngoại tiếp tam giác ABM cắt tiếp tuyên tại điểm C của đường tròn ngoại tiếp tam giác ACM tại D.
a) Chứng minh tứ giác ABDC là tứ giác nội tiếp
b) Gọi K là giao điểm của tia Am với đường tròn ngoại tiếp tứ giác ABDC. Chứng minh KD // BC
c) Gọi E là điểm đối xứng với D qua BC. Chứng minh M,A,E thẳng hàng
Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E
a, Chứng minh BANC là tứ giác nội tiếp
b, Chứng minh CA là phân giác của B C D ^
c, Chứng minh ABED là hình thang
d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất
cho tam giác abc nhọn .vẽ các đường cao bd ce gọi h là trực tâm của tam giác abc .a)chưng minh tứ giác bedc nội tiếp. b) gọi m là điểm đối xứng h qua bc chứng minh tứ giác abmc nội tiếp. c) gọi n là điểm đối xứng của h qua trung điểm I của bc chứng minh abnc nội tiếp