a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Ta có: BC=BH+HC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Ta có: \(AB^2=BH\cdot BC\)(cmt)
\(\Leftrightarrow AB^2=4\cdot13\)
hay \(AB=2\sqrt{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)
hay \(AC=3\sqrt{13}\left(cm\right)\)
a)
Trong tam giác ABC có :
\(AH^2=BH.CH=4.9=36\Rightarrow AH=6\left(cm\right)\)
Áp dụng Pitago trong tam giác AHB vuông tại H ta có :
\(AB^2=AH^2+BH^2=6^2+4^2=52=BH.BC=4\left(9+4\right)\)
(đpcm)
b)
\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-52}=3\sqrt{13}\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
ˆB
chung
Do đó: ΔAHB∼ΔCAB(g-g)
Suy ra: