a: Xét ΔBDM và ΔCEM có
MB=MC
\(\widehat{BMD}=\widehat{CME}\)
MD=ME
Do đó: ΔBDM=ΔCEM
b: Xét tứ giác EBDC có
M là trung điểm của ED
M là trung điểm của BC
Do đó: EBDC là hình bình hành
Suy ra: CE//BD
hay CE⊥AB
\(a,\left\{{}\begin{matrix}BM=MC\\ME=MD\\\widehat{BMD}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BDM=\Delta CEM\left(c.g.c\right)\\ b,\Delta BDM=\Delta CEM\\ \Rightarrow\widehat{BDM}=\widehat{CEM}\\ \text{mà 2 góc này ở vị trí slt nên }CE\text{//}BD\\ \text{Mà }BD\bot AB\Rightarrow CE\bot AB\)