a: góc EFP=1/2*180=90 độ
góc NMP=góc NFP=90 độ
=>NMFP nội tiếp
b: NMFP nội tiếp
=>góc MNP=góc MFP
a: góc EFP=1/2*180=90 độ
góc NMP=góc NFP=90 độ
=>NMFP nội tiếp
b: NMFP nội tiếp
=>góc MNP=góc MFP
bài 1: Cho tam giác MNP cân tại M có đáy nhỏ hơn cạnh bên. Tam giác nội tiếp (O) bán kính R. Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP, MN tại E và D. Hỏi:
a, chứng minh NE bình = EP. EM
b, Chứng minh tứ giác DEPN nội tiếp.
bài 2: Cho (O), lấy A không thuộc đường tròn. Đường thẳng AO giao với (O) tại B, C (AB < AC). Qua A vẽ đường thẳng không đi qua O cắt (O) tại 2 điểm D và E (AD < AE). Đường vuông góc với AB tại A cắt đường thẳng CE tại F.
a, Chứng minh tứ giác ABEF nội tiếp
b, Gọi M là giao điểm thứ 2 của FB với (O). Chứng minh DM vuông góc AC.
c, CE . CF + AD . AE = AC bình
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.
Cho đường tròn tâm (O) đường kính MC. Qua điểm I tùy ý trên đoạn OM (I khác O, M) vẽ dây DE của (O). Đường thẳng MD cắt đường thắng CE tại B và gọi A là hình chiếu vuông góc của B trên đường thẳng MC. Đường thẳng AD cắt đường tròn (O) tại S (S khác D).
1. Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA vuông góc với SE.
2. Chứng minh các đường thẳng BA, EM, CD cắt nhau tại một điểm.
3. Chứng minh M là tâm đường tròn nội tiếp tam giác ADE.
4. Giả sử A, O đối xứng với nhau qua điểm M và đường thẳng AE cắt (O) tại điểm F.(F nằm giữa A và E). Nối CF cắt ME tại P. Chứng minh MP = OP.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Trên cạnh BC lấy điểm D sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm (O) tại M. Gọi E là hình chiếu của M trên AC.
a) Chứng minh tứ giác CDEM nội tiếp một đường tròn.
b) Chứng minh: MA.MD=MB.ME.
Cho đường tròn tâm O đường kính AD. Vẽ dây BC vuông góc với AD. Vẽ đường tròn tâm D bán kính DB. Lấy điểm F trên cung BC. Tiếp tuyến tại F của đường tròn tâm D cắt AB, AC theo thứ tứ tại M và N.
a) Chứng minh rằng tứ giác ABDC nội tiếp
b) Chứng minh rằng BM + CN = MN
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
cho tam giác vuông MNP nối tiếp đường tròn O đường kính NP,đường cao MH đường tròn tâm K đường kính MH cắt MN,MP tại D va E.
a) Tứ giác MDHE là hình gì
b) Các tiếp tuyến tại D và E của đường tròn tâm (K) lần lượt là cắt NP tại Q và R .Chứng minh Q và R lần lượt là trung điểm của NH và PH
c) CM DE vuông góc MO