a: Vì A,B,D,C cùng nằm trên (O)
nên ABDC nội tiếp
b: Xét (D) có
MB,MF là tiếp tuyến
=>MB=MF
Xét (D) có
NF,NC là tiếp tuyến
=>NF=NC
=>MB+CN=MF+NF=MN
a: Vì A,B,D,C cùng nằm trên (O)
nên ABDC nội tiếp
b: Xét (D) có
MB,MF là tiếp tuyến
=>MB=MF
Xét (D) có
NF,NC là tiếp tuyến
=>NF=NC
=>MB+CN=MF+NF=MN
Cho đường tròn tâm O đường kính AD. Vẽ dây BC vuông góc với AD. Vẽ đường tròn tâm D bán kính DB. Lấy điểm F trên cung BC.Tiếp tuyến tại F của đường tròn D cắt AB, AC theo thứ tự tại M và N.
a) Chứng minh rằng tứ giác ABDC nội tiếp
b) Chứng minh rằng BM + CN = MN
Cho đường tròn tâm O bán kính R và dây AB. Vẽ đường kính CD vuông góc với AB tại K. M là điểm thuộc cung nhỏ BC. Gọi F là giao điểm của DM và AB.
a) Chứng minh rằng tứ giác CKFM là tứ giác nội tiếp
b) Chứng minh rằng: \(AD^2\) = DF. DM
Bài 5 (3,0 điểm): Cho nửa đường tròn tâm O đường kính AB, vẽ bán kính OC vuông góc với AB. Trên cung BC lấy điểm D (D khác B và C), tia AD cắt OC tại E.
a. Chứng minh tứ giác OBDE là tứ giác nội tiếp
b. Chứng minh: AE.AD = AC
c. Kẻ El vuông góc với BC tại I. Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác CDE . Giúp mình câu c vs ạ!!!
Cho đường tròn (O;3cm) đường kính BC. Vẽ dây AD vuông góc với BC tại H sao cho BH=1cm ( vẽ hình+ làm bài)
a) Tính độ dài AH
b) Trên bán kính OB lấy điểm E sao cho H là trung điểm của BE. Chứng minh tứ giác ABDE là hình thoi.
c) kéo dài DE cắt AC tại F. Chứng minh rằng AC là tiếp tuyến của đường tròn tâm E bán kính bằng 2/3 AB
d) Qua điểm H vẽ dây MN bất kì của đường tròn (O). Tìm giá trị nhỏ nhất của MN
Cho đường tròn tâm O đường kính AB. Dây cung MN vuông góc với AB tại I( I nằm giữa A và O). Trên tia NM lấy điểm K nằm ngoài đường tròn ( M nằm giữa N và K), AK cắt đường tròn tại C, CB cắt MN tại D. Chứng minh rằng:
a/ Tứ giác ACDI nội tiếp đường tròn. Xác định đường kính và tâm của đường tròn đó.
b/ AB.DI = AC.BD
c/ AD cắt đường tròn tại E. Từ điểm C kẻ đường thẳng vuông góc với AE cắt EI tại F. Chứng minh ECF tam giác cân.
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.
a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho nửa đường tròn tâm O, đường kính BC = 2a, A là điểm trên nửa đường tròn, góc ACB bằng (00 < <900 ). Đường tròn đường kính AB cắt BC ở D (D khác B), tiếp tuyến với đường tròn này ở D cắt AC tại I. Vẽ DEAB và DFAC (E thuộc AB, F thuộc AC).
Tính góc AOB theo
Chứng minh rằng: BEFC là một tứ giác nội tiếp.
Tính diện tích hình quạt tròn (ứng với cung nhỏ AB của đường tròn tâm O đường kính BC) và diện tích tam giác AOB.
Chứng minh rằng: DI là đường trung tuyến của tam giác ADC.
Tính khi DI // EF
Cho đường tròn tâm O và hai đường kính AH, DM không vuông góc với nhau.Tiếp tuyến của đường tròn tâm O tại H cắt AD, AM tại B,C.
a) Chứng minh rằng tứ giác BCMD nội tiếp
b) Đường tròn tâm I đường kính BC cắt đường tròn tâm O ở E. Gọi P là giao điểm của DM và BC. Chứng minh rằng O là trực tâm của tam giác AIP.
c) Chứng minh rằng: A, E, P thẳng hàng.
d) Gọi R,S,K là trung điểm của HC, HB, HO. Chứng minh. RK vuông góc SA