1: Xét ΔMNP có MN<MP
nên NH<HP
2: Xét ΔMNQ có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMNQ cân tại M
1: Xét ΔMNP có MN<MP
nên NH<HP
2: Xét ΔMNQ có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMNQ cân tại M
Cho tam giác MNP vuông tại M. MH là đường cao. Kẻ HK vuông góc với MN tại K. HQ vuông góc với MP tại Q. Chứng Minh
MH^2=NH x HP
Cho tam giác MNP vuông tại M có đường cao MH; kẻ HD vuông góc với MN (D ∈ MN), HE vuông góc với MP (E ∈ MP)
a) Chứng minh tứ giác MEDH là hình chứ nhật
b) Gọi O là trung điểm của MH, chứng minh DO=OE
c) Gọi I, K lần lượt là trung điểm của NH và HP, chứng minh DI//EK
cho tam giác MNP vuông tại M , đường cao MH.
a, chứng minh tam giác HNM đồng dạng tam giác MNP.
b, chứng minh MH^2=NH x PH.
c, lấy điểm E tùy trên cạnh MP, vẽ điểm F trên cạnh MN sao cho góc FHE=90 độ. chứng minh tam giác NFH đồng dạng tam giác MEH và góc NMH = FEH
>_< please, help me now!!!
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP
Cho tam giác MNP vuông tại M, đường cao MH a) chứng minh tam giác HNM đồng dạng tam giác MNP b) chứng minh hệ thức MH²= NH.PH c) Lấy điểm E tùy ý trên cạnh MP ( E khác M,P) .vẽ điểm F trên cạnh MN sao cho góc FHE = 90°. Chứng minh tam giác NFH đồng dạng tam giác MEH và góc NMH = góc FEH. d) xác định vị trí của điểm E trên MP sao cho diện tích tam giác HÈ đạt giá trị nhỏ nhất
Cho tam giác MNP vuông tại M ( MN > MP ), đường cao MH. Từ H kẻ HA vuông góc với MP ( A ϵ MP ), HB vuông góc với MN ( B ϵ MN ).
a) Tứ giác HAMB là hình gì? vì sao?
b) Gọi e là trung điểm của HN. Chứng minh EB vuông góc với AB
cho tam giác mnp vuông tại m, kẻ đường cao mh. gọi E và F theo thứ tự là hìnhchiếu của điểm H trên MN,Mp. Chứng minh:
a) MH=EF
b)MN^2=NH.NP
c)MEF đồng dạng vs tam giác MPN
d) Cho độ dài PN ko đổi. GỌi I,k theo thứ tự là trung điểm của NH và HP. Tìm điều kiện của tam giác MNP để diện tích tứ giác EIKF đạt giá trị lớn nhất