Sửa: FI=IE
Áp dụng định lí Pytago: \(EF^2=DF^2+DE^2=25\Rightarrow EF=5\left(cm\right)\)
Vì FI=IE nên I là trung điểm EF hay DI là trung tuyến ứng với cạnh huyền EF
Vậy \(DI=\dfrac{1}{2}EF=\dfrac{5}{2}\left(cm\right)\)
Sửa: FI=IE
Áp dụng định lí Pytago: \(EF^2=DF^2+DE^2=25\Rightarrow EF=5\left(cm\right)\)
Vì FI=IE nên I là trung điểm EF hay DI là trung tuyến ứng với cạnh huyền EF
Vậy \(DI=\dfrac{1}{2}EF=\dfrac{5}{2}\left(cm\right)\)
Cho tam giác DEF vuông tại D, đường cao DK. Biết DE = 16cm, EF = 20cm
a) Chứng minh tam giác DKF đồng dạng với tam giác EDF
b) Tính độ dài các đoạn thẳng DF; DK
c) Kẻ đường phân giác FI (I thuộc DE) cắt DK tại M. \(\dfrac{MK}{MD}\) = \(\dfrac{DI}{EI}\)
Cho tam giác DEF vuông tại D, có DE = 6cm, DF = 8cm. Đường cao AH
a) Chứng minh tam giác DEF đồng dạng tam giác HDF
b) tính độ dài các đoạn thẳng EF, HE, HF
Cho tam giác DEF vuông tại D có DE=6cm,DF=8cm,đường cao DH. Đường p/g EM cắt DH tại I ( M thuộc DF )
a) CMR :DE2=EH.EF
b) Tính độ dài các đoạn thẳng EF ,EH,DM,MF
c) CM : DE.EI=EM.EH
d) Gọi K là trung điểm của IM . Tính diện tích tam giác DKM
Cho tam giác DEF có DE = 3cm , DF = 4cm, EF = 5CM. DI là đường trung tuyến ứng với xạnh EF
a) Chứng minh tam giăc DEF vuông.
b) Tính độ dài đoạn thẳng DI
c) Qua I kẻ IK vuông góc DF. Tính độ dài đoạn thẳng IK
Cho tam giác DEF vuông tại D có DE = 3cm ;DF=4cm .Gọi Q là trung điểm của EF.Qua Q lần lượt kẻ các đường thẳng vuông góc với DE và DF tại I và K a,Tính độ dài đoạn thẳng DQ. b, Chứng minh tứ giác DIQK là hình chữ nhật. c, Lấy điểm H đối xứng với Q qua I. Chứng minh tứ giác QEHD là hình thoi.
Cho tam giác DEF vuông tại D có DE = 15cm; DF = 20cm. Vẽ đường phân giác DI
( I∈EF). Tính EI, FI ta được:
Cho tam giác DEF có DE = 3cm , DF = 4cm, EF = 5CM. DI là đường trung tuyến ứng với xạnh EF
a) Chứng minh tam giăc DEF vuông.
b) Tính độ dài đoạn thẳng DI
c) Qua I kẻ IK vuông góc DF. Tính độ dài đoạn thẳng IK
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK