Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow (\frac{AB}{AC})^2=\frac{BH.BC}{CH.CB}=\frac{BH}{CH}$
$\Leftrightarrow (\frac{7}{24})^2=\frac{49}{576}=\frac{BH}{CH}$
b.
$\frac{BH}{CH}=\frac{49}{576}$
$BH+CH=BC=625$ (cm)
$\Rightarrow BH=625:(49+576).49=49$ (cm)
$CH=BC-BH=625-49=576$ (cm)
a) Ta có: \(\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2\)
nên \(\dfrac{BH}{CH}=\left(\dfrac{7}{24}\right)^2=\dfrac{49}{576}\)
b) Ta có: \(\dfrac{BH}{CH}=\dfrac{49}{576}\)
nên \(BH=\dfrac{49}{576}CH\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên \(CH+\dfrac{49}{576}CH=625\)
\(\Leftrightarrow CH\cdot\dfrac{625}{576}=625\)
\(\Leftrightarrow CH=576\left(cm\right)\)
\(\Leftrightarrow BH=BC-CH=625-576=49\left(cm\right)\)