a: \(AD\cdot AB=AH^2\)
\(AE\cdot AC=AH^2\)
=>\(AD\cdot AB=AE\cdot AC\)
b: Xét tứ giác ADHE có góc ADH=góc AEH=gócEAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=HB\cdot HC\)
a: \(AD\cdot AB=AH^2\)
\(AE\cdot AC=AH^2\)
=>\(AD\cdot AB=AE\cdot AC\)
b: Xét tứ giác ADHE có góc ADH=góc AEH=gócEAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=HB\cdot HC\)
Cho tam giác ABC nhọn có đường cao AH. Kẻ HD vuông góc với AB tại D. Cho AH=8 cm, AB=10 cm
a,Tính HB, HD
b,Kẻ HE vuông góc với AC tại E. CMR: AD.AB=AE.AC
c, Biết góc ACB=30 độ, tính diện tích tứ giác BDEC
Cho Tam giác ABC vuông tại A (AB<AC), đường cao AH
A)Cho AB=6cm và cosABC=3/5. Tình BC,AC,BH
B)Kẻ HD vuông góc với AD tại D , HE vuông góc với AC tại E . CM AD.AB=AE.AC
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.
a) Cho AB = 6 cm và cosABC = \(\dfrac{3}{5}\). Tính BC, AC, BH.
b) Kẻ HD vuông với AB tại D, AE vuông AC tại E. Chứng minh AD.AB = AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\).
cho tam giác ABC nhọn, đường cao Ah. Kẻ HD vuông góc AB tại D. HE vuông góc AC tại E. Chứng minh:
a)AD.AB=AE.AC
b)Góc BDE + góc ECB = 180độ
Câu A mình làm được, giúp mình câu B nhé!
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). Chứng minh:
a) AD.AB=AE.AC
b) Tam giác AED ~ Tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB=4cm, AC=\(4\sqrt{3}\)cm. Giải tam giác ABC.
b) Kẻ HD,HE lần lượt vuông góc với AB,AC (D thuộc AB, E thuộc AC). Chứng minh BD.DA+CE.EA=\(AH^2\)
c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I Chứng minh \(sinAMB.sinACB=\dfrac{HI}{CM}\) GIẢI HỘ E PHẦN C THÔI Ạ
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD
Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ HD vuông AB tại D.
a) Cm AD.AB=BH.HC
b) Cm 1/HD2 = 1/AB2 + 1/AC2 + 1/BH2
c) Lấy điểm M tùy ý trên AH. Vẽ CN vuông BM tại N. Cm AB2 = BM.BN
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB tại E và HF vuông góc AC tại F
a) Cho HC = 16cm, HB = 9cm. Tính AB, AC, AH
Lưu ý: các số liệu này chỉ được dùng cho câu a
b) CM: AB.AE = AF . AC và HF = AB . AC2 / BC2
c) CM : BE2 + CF2 ≥ EF2. Khi nào dấu bằng xảy ra?