a: BC*sinB*cosB
=BC*AB/BC*AC/BC
=AB*AC/BC=AH
a: BC*sinB*cosB
=BC*AB/BC*AC/BC
=AB*AC/BC=AH
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) biết HB = 4cm , HC = 9cm. tính AH và số đo góc ABC
b) gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. chứng minh CE.BD.AC.AB = AH4
c) kẻ AI vuông góc với ED (I thuộc BC). chứng minh I là trung điểm BC
giải chi tiết giúp mình ạ! mình cảm ơn nhiều<3
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
Cho tam giác ABC vuông tại âkẻ đường cao AH sao cho BH = 9 cm CH= 16 cm a tính độ dài AH AB và CD Gọi D và E lần lượt là hình chiếu vuông góc của H Trên cạnh AB và AC cắt BD tại I Chứng minh rằng góc ADE = góc ACB .c)gọi O là trung điểm của BC , AOcắt DE tại k Chứng minh rằng AH mũ 2 =AK.BC
Cho ∆ABC vuông tại A, đường cao AH, AB = 3cm, BC = 6cm 1. Tính AH và chu vi của tam giác ABC 2. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC a) Tính độ dài AH và chứng minh EF = AH b) Chứng minh EA.EB + AF.FC = EF²
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
Cho tam giác abc vuông tại A có Ah là đường cao. Biết AB = 6cm, BC = 10cm:
a) Giải tam giác ABC
b) Gọi D là hình chiếu của H lên AC. Tính AH, AD
c) Kẻ AE vuông góc BD tại E. Chứng minh AB = AC.tanBEH
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 5cm
a) giải tam giác ABC
b) gọi E , F , lần lượt là hình chiếu H trên cạnh AB và AC
- TÍnh độ dài AH
- Chứng minh EF = AH
Cho tam giác ABC có đường cao AH( H nằm giữa B và C và AB<AC).
a) Chứng minh AH=BC:(1/tgB+1/tgC).
b) Chứng minh Sabc=1/2CA.CB.sinC.
c) Chứng minh sinB+cosB>1.
d) Gọi E, F lần lượt là hình chiếu H lên AB và AC. Tia FE cắt BC tại D. Chứng minh DE.DF= DB.DC.DH^2.
e) Nếu AH^2= HB.HC. Khi đó chứng minh Tam giác ABC vuông.
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a)Tính AH biết HB = 4cm, HC =9cm. b)Chứng minh rằng: AD.AB = AE.AC c)Gọi I, K lần lượt là trung điểm của BH và CH, Chứng minh rằng tứ giác DEKI là hình thang vuông, tính diện tích của tứ giác DEKI.