b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH, MK lần lượt vuông góc với AB và AC ( H thuộc AB và K thuộc AC)
a) chứng minh tứ giác AHKM là hình chữ nhật và AM = HK
b) chứng minh tứ giác BHKM là hình bình hành
c) gọi E là trung điểm của MH, F là trung điểm của MK. Đường thẳng HK cắt AE, À lần lượt tại I và D. Chứng minh HI = KD
Vẽ cả hình
3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).
a. Chứng minh tứ giác AKMH là hình chữ nhật.
b. Chứng minh tứ giác BHKM là hình bình hành.
c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.
d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.
4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .
a. Tứ giác AIHK là hình gì? Vì sao?
b. Chứng minh ba điểm D,E,A thẳng hàng.
c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK.
Cho tam giác ABC vuông tại A, đường trung tuyến AM
a) Tính Am, biết BC=9cm
b) Từ M kẻ MK vuông góc Ab tại K, kẻ MH vuôn góc AC tại H. Chứng minh tứ giác AHMK là hình chữ nhật
c) Chứng minh tứ giác HMBK là hình bình hành
d)Chứng minh HK=AM
Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH, MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).
b) Chứng minh tứ giác BHKM là hình bình hành
c) Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE, AF lần lượt tại I và J. Chứng minh HI = KJ.
d) Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 43 (cm). Tính độ dài EF.
Cho tam giác ABC vuông tại A có AM là trung tuyến. Vẽ MD vuông góc AB, ME vuông góc AC.
a. Chứng minh tứ giác ADME là hình chữ nhật
b. Gọi N là điểm đối xứng của M qua E. Chứng minh tứ giác AMCN là hình thoi
GIÚP EM CÂU B THÔI MN ƠI !
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của BC.Kẻ MH vuông góc AB tại H, kẻ MK vuông góc AC tại K
a) Chứng minh tứ giác AHMK là hình chữ nhật
b) Kẻ tia Ax//BC,cắt tia MK tại D.Chứng minh tứ giác ABMD là hình bình hành suy ra AM=AD
c) chứng minh tứ giác AMCD là hình thoi
d) Tìm điều kiện của tam giác ABC để tứ giác AMCD là hình vuông
bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)
a) chứng minh tứ giác bhkm là hình bình hành.
b) chứng minh tứ giác hmck là hình bình hành.
c) chứng minh h là trung điểm của ab .
d) chứng minh bc=2hk
Bài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.
a) Chứng minh OM =ON
b) Tứ giác AMCN là hình gì? Vì sao?
c) Chứng minh BN // DM và BN = DM
Bài 9. Cho hình bình hành ABCD . Trên đường chéo BD lấy hai điểm M và N sao cho: BN=DN=1/3BD
a) Chứng minh :tam giác AMB=tam giác CND
b)Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD , I là giao điểm của AM và BC . Chứng minh rằng: AM=2MI
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O .
Cho tam giác ABC vuông tại A, có đường phân giác AM. Từ M kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh tứ giác AHMK là hình vuông.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm đường trung tuyến AM (M thuộc BC).
a, Tính AM.
b, Gọi H,K lần lượt là hình chiếu của M. Chứng minh AHMK là hình chữ nhật.
c, Tam giác vuông ABC thêm điều kiện gì để tứ giác AHMK là hình vuông