-HE⊥AB tại E, AB⊥AC tại A nên HE//AB
-CM cắt AB tại D.
△BDC có: HI//BD \(\Rightarrow\dfrac{HI}{BD}=\dfrac{CI}{CD}\).
△ACD có: IE//AD \(\Rightarrow\dfrac{EI}{AD}=\dfrac{CI}{CD}=\dfrac{HI}{BD}\Rightarrow\dfrac{EI}{AD}=\dfrac{HI}{BD}=\dfrac{EI+HI}{AD+BD}=\dfrac{EH}{AB}\left(1\right)\)
△HMI có: HI//AD \(\Rightarrow\dfrac{HI}{AD}=\dfrac{MI}{MD}\).
△IEM có: EI//BD \(\Rightarrow\dfrac{EI}{BD}=\dfrac{MI}{MD}=\dfrac{HI}{AD}\Rightarrow\dfrac{EI}{BD}=\dfrac{HI}{AD}=\dfrac{EI+HI}{BD+AD}=\dfrac{EC}{AC}\left(2\right)\)
-Từ (1), (2) suy ra \(\dfrac{HI}{AD}=\dfrac{EI}{AD}\Rightarrow HI=EI\Rightarrow\)I là trung điểm HE