Tk:
a) Điểm D đối xứng điểm H qua trục AB
⇒ AB là đường trung trực của HD
⇒ AH = AD (tính chất đường trung trực) ⇒ ∆ ADH cân tại A
Suy ra: AB là tia phân giác của ˆDAH⇒ˆDAB=ˆA1DAH^⇒DAB^=A^1
Điểm H và điểm E đối xứng qua trục AC
⇒ AC là đường trung trực của HE
⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A
Suy ra: AC là đường phân giác của ˆHAE⇒ˆA2=ˆEACHAE^⇒A^2=EAC^
Ta có: ˆDAE=ˆDAH+ˆHAEDAE^=DAH^+HAE^=2(ˆA1+ˆA2)=2.900=1800=2(A^1+A^2)=2.900=1800
Suy ra D, A, E thẳng hàng
Lại có: AD = AE (vì cùng bằng AH)
Nên điểm A là trung điểm của đoạn DE
Vậy điểm D đối xứng với điểm E qua điểm A.
b) Tam giác DHE có HA là trung tuyến và