Vì ΔABC vuông tại A nên ΔABC nội tiếp đường tròn đường kính BC
hay R=BC/2
\(AH^2=HB\cdot HC\)
=>HC=144:8=18(cm)
=>BC=26(cm)
=>R=13(cm)
Vì ΔABC vuông tại A nên ΔABC nội tiếp đường tròn đường kính BC
hay R=BC/2
\(AH^2=HB\cdot HC\)
=>HC=144:8=18(cm)
=>BC=26(cm)
=>R=13(cm)
Cho tam giác ABC vuông tại A .Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với AB,BC tại P,Q.Đường thẳng đi qua trung điểm F của AC và tâm I cắt AB tại E,PQ cắt đường cao AH tại M. Cm:AE=AM
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết chu vi tam giác AHB là 30 cm, chu vi tam giác AHC là 40 cm. Tính chu vi tam giác ABC.
Cho tam giác ABC vuông tại A , đường cao AH = 24cm , HB = 16cm.
a ) Tính HC,AB,AC,BC
b ) Tính các góc B,C .
cho đường tròn tâm o nội tiếp tam giác ABC cân tại A đường cao AH cắt đường tròn tâm o tại D chứng minh BC.BC=4AH.DH
Cho tam giác ABC, biết AB=12cm, BC=20cm, AC=16cm
a. Chứng minh tam giác ABC là tam giác vuông
b. Vẽ đường cao AH. Tính AH,BH
c. Giải tam giác vuông ACH
d. Vẽ phân giác AD. Tính DB, DC
e. Tinh cosB trong hai tam giac vuong HBA va ABC . suy ra AB2= BH.BC
Cho tam giác ABC vuông ở A đường cao AH . Qua B và C làn lượt vẽ các tiếp tuyến với (A, AH) tại D và E(D,EH)
a, Chứng minh DE=2AH
b, Chứng minh DE là tiếp tuyến của đường thẳng đường kính BC
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ dường tròn tâm O đường kính AH cắt AB, AC lần lược tại E và F.
a/ Chứng minh tứ giác AEHF là hình chữ nhật.
b/ Chứng minh AE.AB = AF.AC
c/ Gọi I và K lần lượt là trung điểm của BH và HC. Chứng minh IE, KF là tiếp tuyến của dường tròn (O).
d/ Chứng minh SEFKI = \(\frac{1}{2}\) SABC (SEFKI, SABC là diện tích tứ giác EFKI và tam giác ABC)
cho tam giác ABC vuông tại A ;có đường cao AH; gọi D và E là hình chiếu của H trên ab và ac, biết ab = 9cm;ac= 12cm .Chứng minh ; AD. AB=AE. AC
Cho tam giác ABC vuông tại A, BC = a, r là bán kính của đường tròn nội tiếp tam giác. Chứng minh rằng r/a ≥ (√2 -1)/2
giải nhanh dùm mk nha thks nhìu