Áp dụng Py_ta_go => BC = 15 cm. Áp dụng hệ thức ah=bc => AH = 7,2cm
=> AD = AH2/AB = 5,76cm.
CMTT => AE = 4,32 cm
Có AE = \(\frac{3}{4}\)AD ↔ 4AE = 3AD ↔ 12AE = 9AD.
Mà AB=9cm, AC=12cm
=> AC.AE=AB.AD
Áp dụng Py_ta_go => BC = 15 cm. Áp dụng hệ thức ah=bc => AH = 7,2cm
=> AD = AH2/AB = 5,76cm.
CMTT => AE = 4,32 cm
Có AE = \(\frac{3}{4}\)AD ↔ 4AE = 3AD ↔ 12AE = 9AD.
Mà AB=9cm, AC=12cm
=> AC.AE=AB.AD
1. Cho tam giác ABC có AB=6cm, AC=8cm .Các đường trung tuyến BD và CE vuông góc với nhau. Tính BC.
2. Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh : AH=3HD
cảm ơn các bạn trước nhaaa
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC, biết AB=12cm, BC=20cm, AC=16cm
a. Chứng minh tam giác ABC là tam giác vuông
b. Vẽ đường cao AH. Tính AH,BH
c. Giải tam giác vuông ACH
d. Vẽ phân giác AD. Tính DB, DC
e. Tinh cosB trong hai tam giac vuong HBA va ABC . suy ra AB2= BH.BC
cho tam giác góc nhọn ABC, kẻ đường cao AH.Từ H kẻ HE vuông góc với AB(E thuộc AB),kẻ HF vuông goc AC(F thuộc AC)
a)chứng minh rằng AE.AB=AF.AC
b)cho BH=3cm,AH=4cm .tinh AE,BE
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ dường tròn tâm O đường kính AH cắt AB, AC lần lược tại E và F.
a/ Chứng minh tứ giác AEHF là hình chữ nhật.
b/ Chứng minh AE.AB = AF.AC
c/ Gọi I và K lần lượt là trung điểm của BH và HC. Chứng minh IE, KF là tiếp tuyến của dường tròn (O).
d/ Chứng minh SEFKI = \(\frac{1}{2}\) SABC (SEFKI, SABC là diện tích tứ giác EFKI và tam giác ABC)
Cho tam giác ABC có:AB=21cm,AC=28cm,BC=35cm ,đg cao AH,Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Gọi M,N lần lượt là trung điểm của BH và HC
a)Tính BH,DE,góc ABC?
b)Tính SDENM?
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
1. cho 4 điểm E,B,C,D cùng nằm trên 1 đường thẳng thoả mãn \(\frac{DB}{DC}\)=\(\frac{EB}{EC}\) và 1 điểm A sao cho AE vuông góc với AD. CMR: AD,AE thứ tự là phân giác trong và ngoài của tam giác ABC
2. cho hình thang ABCD (BC//AD). gọi M,N lần lượt là 2 điểm trên AB, CD sao cho \(\frac{AM}{AB}\)=\(\frac{CN}{CD}\); đường thẳng MN cắt AC,BD tại E,F. CMR: ME=NF
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.