a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
Em đag thắc mắc 1 bài toán cần gấp ạ . Cho Tam giác ABC vuông tại A , đườg cao AH , AB=15cm , AC =20cm . Gọi E là điểm đối xứng của B qua H vẽ hình bình hành ADCE
a) tính AH
b) tính diện tích tứ giác ABCD
Cho tam giác ABC vuông tại A, có đường cao AH, AB=15cm, AC=20cm a) tính BC,AH b) vẽ tia phân giác AD của tam giác AHC (CD€ CH).CM tam giác ABD cân
1) Cho tam giác ABC vuông tại A , đường cao AH ( H thuộc BC ) a) Chứng minh tam giác ABC đồng dạng với tam giác HBA. b) Tính độ dài đoạn thẳng BC, AH , trong trường hợp AB =6cm; AC cm 8cm c) Gọi M là trung điểm của đoạn thẳng AH , trên tia đối của tia AB lấy điểm K sao cho A là trung điểm của đoạn thẳng BK .Chứng minh tam giác HBK đồng dạng với tam giác MAC .
Mọi người ơi giúp mik với. Cảm ơn trc nha .
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC. AB giao với MH tại E, AC giao với HN tại F.
a) Tứ giác AEHF là hình gì ?
b)Tính EF. Giả sử AB=3cm,AC=4cm
c)Chứng minh rằng:A là trung điểm của MN
d)Chứng minh MN là tiếp tuyến của đường tròn ngoại tiếp của tam giác ABC
cho tam giác nhọn ABC nội tiếp đường tròn (O;R) (AB>AC ) . gọi H là giao điểm của 2 đường cao BD và CE của tam giác ABC , F là giao điểm của AH và BC .a) CM tứ giác BEHF nội tiếp . b) CM FA*FH =FB *FC . vẽ đường kính AI của đường tròn (O) . gọi K là điểm đối xứng của H qua BC . CM tứ giác BIKC là hình thang cân
CHO tam giác ABC vuông tại A; AB =15cm AC=20cm, chẳng cao AH. Gọi I, K lượt là trung điểm của AH, BH
a) tính BC, AH, HC và góc ACH.
b) Chứng minh KI vuông góc với AC và I là trực tâm tam giác CAK.
c) Chứng minh tam giác KBA đồng dạng với tam giác IAC
Cho tam giác ABC vuông tại A, có đường cao là AH, HB = 9cm, HC = 16 cm
a, Tính AB, AC, AH
b, Gọi D và E lần lượt là hình chiếu vuông góc của H trên AB và AC. Tứ giác ADHE là hình gì?
c, Tính chu vi và diện tích của tứ giác ADHE
d, Tính chu vi và diện tích tứ giác BDEC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=15cm, BC=25cm.
a)tính AC,AH,HB,HC (câu này viết chắc đáp án thôi ạ)
b) Qua B kẻ đường thẳng d vuông góc với BC. Gọi I là trung điểm AH; CI cắt đường thẳng d tại K. Tính AK,BK
c) Gọi E là điểm đối xứng H qua A; BI cắt EC tại F. Chứng minh rằng tam giác EHC và tam giác BHI đồng dạng, I là trực tâm tam giác EBC
(NẾU ĐƯỢC THÌ VẼ HÌNH GIÚP MÌNH VỚI Ạ, KO VẼ CŨNG KHÔNG SAO)
Cho tam giác ABC vuông tại A có AH là đường cao. Biết AC= 16cm, BC = 20 cm
a)Giải tam giác ABC
b)Tính CH và AH
c) Gọi M,N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh: AM.AB= BH.HC
Mấy anh chị làm giúp em cái nay đi ;(