cho tam giác ABC vuông tại A có góc C=30 độ, đường cao AH.trên đoạn HC lấy điểm D sao cho HD=HB
a)Chứng minh tam giác AHB=tam giác AHD
b) chứng minh tam giác ABD đều
c) từ C kẻ CE vuông góc với AD.Chứng minh DE=HB
d)từ D kẻ DF vuông góc AC . I là giao điểm của CE và AH.
Chúng minh ba điểm I,D,F thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b: ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d: Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a)
Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b)
ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c)
Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d)
Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng