Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kkkkk

Cho tam giác ABC vuông tại A, có đường cao AH, đường trung tuyến AM. Gọi O là trung điểm của AM. Trên tia đối của tia OH lấy điểm K sao cho OK = OH a) Chứng minh tứ giác AHMK là hình chữ nhật b) Trên tia đối của tia MH lấy điểm F sao cho MF = MH Chứng minh tứ giác AMFK là hình bình hành c) Kẻ HQ vuông góc với KF tại Q. Chứng minh: MQ vuông góc với AQ.

Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 23:15

a: OK=OH

O nằm giữa K và H

Do đó: O là trung điểm của KH

Xét tứ giác AHMK có

O là trung điểm chung của AM và HK

=>AHMK là hình bình hành

Hình bình hành AHMK có \(\widehat{AHM}=90^0\)

nên AHMK là hình chữ nhật

b: AHMK là hình chữ nhật

=>AK//HM và AK=HM

Ta có: AK//HM

M\(\in\)HF

Do đó: AK//MF

Ta có: AK=MK

MH=MF

Do đó: AK=MF

Xét tứ giác AMFK có

AK//FM

AK=FM

Do đó: AMFK là hình bình hành

c:

Ta có: AHMK là hình chữ nhật

=>AM=HK

ta có: ΔQKH vuông tại Q

mà QO là đường trung tuyến

nên \(QO=\dfrac{KH}{2}=\dfrac{AM}{2}\)

Xét ΔAQM có

QO là trung tuyến

\(QO=\dfrac{AM}{2}\)

Do đó: ΔAQM vuông tại Q

=>QA\(\perp\)QM


Các câu hỏi tương tự
Kkkkk
Xem chi tiết
Kkkkk
Xem chi tiết
Kkkkk
Xem chi tiết
Kkkkk
Xem chi tiết
Kkkkk
Xem chi tiết
Tiffany Ho
Xem chi tiết
Phùng Thủy Nguyên
Xem chi tiết
Đô Đồng Dương
Xem chi tiết
Gia Hân
Xem chi tiết