Cho tam giác ABC VUÔNG TẠI A, GỌI M LÀ TRUNG ĐIỂM CỦA BC. TRÊN TIA ĐỐI CỦA TIA MA LẤY ĐIỂM N SAO CHO AM=MN
1, CHỨNG MINH TỨ GIÁC ABNC LÀ HÌNH CHỮ NHẬT
2, KẺ MH VUÔNG GÓC AC TẠI H, LẤY ĐIỂM E THUỘC TIA ĐỐI CỦA HM SAO CHO HE=HM
a, CHỨNG MINH H LÀ TRUNG ĐIỂM CỦA AC
b, NẾU BIẾT BC=5cm, TÍNH CHU VI TỨ GIÁC AMCE
3, GỌI K LÀ TRUNG ĐIỂM CỦA BN. CHỨNG MINH EM= 2MK
GIÚP MÌNH VỚI. TỚ KHÔNG BIẾT CÁCH GIẢI, CHIỀU MAI TỚ NỘP CHO CÔ RỒI HUHU VÀO NGÀY THỨ 4 NGÀY 22 THÁNG 11 NĂM 2023 PLEASE:(((
1: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
nên ABNC là hình bình hành
Hình bình hành ABNC có \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
2:
a: Xét ΔABC có
M là trung điểm của BC
MH//AB
Do đó: H là trung điểm của AC
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
Xét tứ giác AMCE có
H là trung điểm chung của AC và ME
nên AMCE là hình bình hành
Hình bình hành AMCE có MA=MC
nên AMCE là hình thoi
=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)
3: Xét ΔNAB có
M,K lần lượt là trung điểm của NA,NB
=>MK là đường trung bình của ΔNAB
=>\(MK=\dfrac{AB}{2}\)
AMCE là hình thoi
=>AE//CM và AE=CM
AE//CM
\(M\in BC\)
Do đó: AE//BM
AE=CM
CM=BM
Do đó: AE=BM
Xét tứ giác ABME có
AE//MB
AE=MB
Do đó: ABME là hình bình hành
=>ME=AB
mà MK=1/2AB
nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)
=>ME=2MK