1: \(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=10-3,6=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
2: \(AE\cdot AB=AH^2\)
\(AF\cdot AC=AH^2\)
Do đó: \(AE\cdot AB=AF\cdot AC\)
1: \(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=10-3,6=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
2: \(AE\cdot AB=AH^2\)
\(AF\cdot AC=AH^2\)
Do đó: \(AE\cdot AB=AF\cdot AC\)
Cho tam giác ABC nhọn có ba đường cao AD, BI, CK giao nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt tại E, F.
a. Chứng minh rằng AE.AB=AF.AC
b. Giả sử HD =1/3 AD. Chứng minh tanB.tanC=3
c. Gọi M,N lần lượt là chân đường vuông góc kẻ từ D xuống BI, CK. Chứng minh rằng EMNF thẳng hàng
Bài 4. Cho tam giác ABC vuông tại A có AB AC , đường cao AH , trung
tuyến AM .
a) (cả hình) Giả sử BH cm;CH cm = = 18 32 . Tính độ dài đoạn thẳng HM .
b) Gọi E và F lần lượt là hình chiếu của điểm H trên cạnh AB và AC . AM
cắt FE tại K . Chứng minh FE vuông góc với AM
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
Cho tam giác ABC vuông tại A Biết AB = 3 cm, BC = 5 cm
a, Giải tam giác vuông ABC (số đo góc làm tròn đến độ)
b, Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tính độ dài các đoạn thẳng AD, BD
c, Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh hai tam giác BEF và BDC đồng dạng
Bài 4: Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.
1) Chứng minh tứ giác BHEK là tứ giác nội tiếp
2) Chứng minh BH.BA = BK.BC
3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.
cho tam giác ABC vuông tại A có đường cao AH
a) biết BH=3,6cm, CH=6,4cm. tính độ dài các đoạn thẳng AH, AB, AC, BC và các góc B,C
b) gọi D,E lần lượt là hình chiếu của H trên AB, AC. chứng minh rằng AH2 = AD.AB , từ đó suy ra AD.AB = AE.AC
giải chi tiết giúp mình ạ!!
Cho tam giác ABC vuông tại A , AB= 6cm , AC=8 cm , kẻ đường cao AH
a) Tính độ dài AH
b)Gọi I là giao điểm của các đường phân giác của tam giác ABC, gọi K,E,F thức tự là chân đường vuông góc kẻ từ I lần lượt đến các cạnh AB, BC, CA . Tính đọ dài BE
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.
a) Cho BH=4cm , CH=9cm. Tính AH,DE.
b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.
c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.