1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
Cho tam giác ABC vuông tại A, có AB=18cm, AC=24cm
1.Tính độ dài cạnh BC
2.Gọi I là trung điểm của BC. Đường vuông góc với cạnh BC tại I cắt AC tại E. Chứng minh rằng
a) Hai tam giác ABC và IEC đồng dạng
b) Tính độ dài các cạnh của tam giác IEC
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
cho tam giác ABC vuông tại C (AC<BC). vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. qua B vẽ đường vuông góc với tia Ax và cắt tia Ax tại H.
a) chứng minh tam giác AIC đồng dạng với tam giác BHI.
b) cho AC=15cm,AB=25cm. tính độ dài các cạnh CB, Ci ?
c) chứng minh HB^2 =Hi.HA
d) gọi k là trung điểm của cạnh AB. qua i vẽ đường thẳng vuông góc với iK và cắt hai cạnh AC và BH lần lượt tại M và N chứng minh i là trung điểm của MN
Câu 3. Cho ABC có AB = 18cm , AC = 24cm , BC = 30cm. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với AB cắt AC, AB lần lượt tạo D và E.
a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác MDC.
b) Tính độ dài các cạnh MDC.
c) Tính độ dài BE , EC.
Câu 4. Cho hình chóp tứ giác đều SABCD ; ABCD là hình vuông cạnh 20cm, cạnh bên 24cm. Tính thể tích hình chóp.
cho tam giác abc vuông tại b có ab= 9cm bc= 12cm ac=15cm. gọi i là trung điểm của ac. qua i kẻ đường vuông góc với ac cắt bc, ab lần lượt ở d và e
a) chứng minh: tam giác abc đồng dạng với tam giác DIC
b) tính độ dài các cạnh của tam giác IDC
c) chứng minh \(\frac{BE}{IC}=\frac{ED}{CD}\)
Cho tam giác ABC vuông tại C (AC < BC ). Vẽ tia phân giác Ax của góc
BAC cắt cạnh BC tại I. Qua B vẽ đường thẳng vuông góc với tia Ax và cắt Ax tại H.
a,Chứng minh tam giác AIC đồng dạng với tam giác BHI
b, Cho AC=15cm, AB=25 cm. Tính độ dài các cạnh CB, CI ?
c, Chứng minh: HB 2 = HI.HA
d, Gọi K là trung điểm của cạnhAB . Qua I vẽ đường thẳng vuông góc với IK và cắt hai cạnh AC và BH lần lượt tại M và N. Chứng minh: I là trung điểm của MN
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
cho tam giác abc vuông tại a .cạnh ab=6cm, ac=8cm. kẻ đường phân giác abc cắt ac tại d. kẻ ce vuông góc với bd tại e. 1/tính độ dài bc. 2/ chứng minh tam giác abc đồng dạng với tam giác ebc. 3/ chứng minh cd.be=ce.cb . 4/ gọi eh là đường cao của tam giác ebc.chứng minh ch.cb=ed.eb