Cho tam giác ABC vuông tại C (AC < BC ). Vẽ tia phân giác Ax của góc
BAC cắt cạnh BC tại I. Qua B vẽ đường thẳng vuông góc với tia Ax và cắt Ax tại H.
a,Chứng minh tam giác AIC đồng dạng với tam giác BHI
b, Cho AC=15cm, AB=25 cm. Tính độ dài các cạnh CB, CI ?
c, Chứng minh: HB 2 = HI.HA
d, Gọi K là trung điểm của cạnhAB . Qua I vẽ đường thẳng vuông góc với IK và cắt hai cạnh AC và BH lần lượt tại M và N. Chứng minh: I là trung điểm của MN
a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có
\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)
Do đó: ΔACI~ΔBHI
b: Ta có: ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=25^2-15^2=400\)
=>\(CB=\sqrt{400}=20\left(cm\right)\)
Xét ΔABC có AI là phân giác
nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)
=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)
=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)
mà CI+BI=CB=20cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)
=>\(CI=2,5\cdot3=7,5\left(cm\right)\)
c: Ta có: ΔACI~ΔBHI
=>\(\widehat{CAI}=\widehat{HBI}\)
mà \(\widehat{CAI}=\widehat{BAH}\)
nên \(\widehat{HBI}=\widehat{HAB}\)
Xét ΔHBI vuông tại H và ΔHAB vuông tại H có
\(\widehat{HBI}=\widehat{HAB}\)
Do đó: ΔHBI~ΔHAB
=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)
=>\(HB^2=HI\cdot HA\)