a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=6(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=6(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD
Cho tam giác ABC vuông tại A có AB bằng 3 cm BC = 5 cm a tính AC, góc B góc c b) phân giác của góc A cắt BC tại E Tính BE CE d)kẻ đường c kẻ đường cao AH và đường trung tuyến AM tính diện tích tam giác AMH
Cho tam giác ABC vuông tại A có AB = 3 cm, BC = 6 cm.
a) Tính độ dài cạnh AC, số đo góc B và góc C
b) Vẽ (O) ngoại tiếp tam giác ABC. Đường cao AH của tam giác ABC cắt (O) tại D. Chứng minh BC là đường trung trực của AD
c) Tiếp tuyến tại D của (O) cắt BC tại E. Chứng minh EA là tiếp tuyến của (O)
d) Chứng minh EA^2 = EB.EC
Câu 1 : Cho Tam Giác ABC ( A = 90 độ ) biết AB = 3 Cm , C = 30 độ . Tính AC , BC
Câu 2 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH . Biết HB = 9 Cm , HC=16Cm
a , Tính AB , Ac , Ah
b, Gọi D Và E Lần Lượt Là Hình Chiếu Vuông Góc Của H Trên AB Và AC . Tứ Giác ADHE Là Hình Gì ? Chứng Minh
c , Tính Chu Vi Và Diện Tích Của Tứ Giác Đó
Câu 3 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH , Biết BH = a , CH = b
Chứng Minh : Căn Bậc Hai Của ab bé hơn hoặc bằng a+b/2
Cho tam giác ABC vuông tại A Biết AB = 3 cm, BC = 5 cm
a, Giải tam giác vuông ABC (số đo góc làm tròn đến độ)
b, Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tính độ dài các đoạn thẳng AD, BD
c, Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh hai tam giác BEF và BDC đồng dạng
cho tam giác ABC, AB =9cm, AC=12cm, BC =15cm, AH đg cao
a/ chứng minh tam giác ABC vuông
b/ tính AH, BH
c/ cho HE vuông góc AB tại E , HI vuông góc AC tại I
cmr : AE.AB = AI.AC
d/ Cm căn BH.HC bé hơn bằng BC/2
Cho tam giác ABC vuông tại A, đường cao AH.
a) Nếu sin ACB=3/5 và BC=20 cm. Giải tam giác ABC.
b) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. c/m AD.AC=BH.BC
c) Kẻ tia phân giác BE của DBA . c/m \(tanEBA=\dfrac{AD}{AB+BD}\)
Cho tam giác ABC vuông tại A có AB = 9 cm , AC = 12 cm
a. Tính góc B, C , đường BC và đường cao AH
b. Đường phân giác của góc A cắt BC tại D . Tính BD, CD
Cho tam giác ABC,góc A bằng 90 độ, AB=24 cm, AC=18 cm. Từ trung điểm M trên cạnh BC, kẻ đường vuông góc với BC, cắt AC tại D, AB tại E. a) Chứng minh DMC đồng dạng ABC và tính độ dài các cạnh của tam giác DMC ? b) Tính BE ?