Xét \(\Delta\)ANE và \(\Delta\)BAE có:
^BAE = ^ANE = 90 độ
^ABE = ^NAE ( cùng phụ ^BAN )
=> \(\Delta\)ANE ~ \(\Delta\)BAE ( g.g)
=> \(\frac{AN}{NE}=\frac{AB}{AE}=\frac{AC}{AE}=2\)
=> AN = 2 AE.
Xét \(\Delta\)ANE và \(\Delta\)BAE có:
^BAE = ^ANE = 90 độ
^ABE = ^NAE ( cùng phụ ^BAN )
=> \(\Delta\)ANE ~ \(\Delta\)BAE ( g.g)
=> \(\frac{AN}{NE}=\frac{AB}{AE}=\frac{AC}{AE}=2\)
=> AN = 2 AE.
cho tam giác vuông abc vuông tại a kẻ đường cao am n là điểm bất kỳ thuộc cạnh bc kẻ np vuông góc với ac (p thuộc ac) kẻ nq vuông góc với ab(q thộc ab) a chứng minh an=pq b gọi i là giao điểm của an và pq chứng minh tam giác nfm là tam giác cân và góc pqm=90 độ
cho tam giác ABC cân tại A.Kẻ đường cao AH. Kẻ HD vuông góc AC , HM song song BD (M thuộc AC)
a) chứng minh M là trung điểm của CD
b) Gọi N là trung điểm của HD , tia MN cắt AH tại E. Chứng minh : ME vuông góc AH
c) Chứng minh : AN vuông góc BD
Cho tam giác ABC cân tại A, đường trung tuyến AH. Gọi O là trung điểm của AC, D là điểm đối xứng với H qua O. A. Chứng minh AH = HD B. Chứng minh tứ giác ABHD là hình có tâm đối xứng. C. Kẻ AE vuông góc với AC, E thuộc AC .Gọi M là trung điểm của HE. Chứng minh AM vuông góc với BE
Cho tam giác ABC cân tại A,AH là đg cao.Kẻ HD vuông góc với AC tại D,I là trung điểm HF.Cmr AI vuông góc với BD
Cho tam giác ABC vuông cân tại A.D thuộc AB,E thuộc AC sao cho AD=AE.Đg thẳng đi qua D vuông góc với BE cắt BC tại I.Đg thẳng đi qua A vuông góc với BE cắt BC tại K.Cmr IK=KC
Cho tam giác ABC cân tại A, đường trung tuyến AH. Gọi O là trung điểm của AC, D là điểm đối xứng với H qua O.
a) chứng minh AC=HD
b) Chứng minh tứ giác ABHD là hình có tâm đối xứng
c) Kẻ HE vuông góc với AC ( E thuộc AC). Gọi M là trung điểm của HE. Chứng minh AM vuông góc với BE
CHo tam giác ABC vuông tại A có AB=8cm, AC=6cm, lấy N là trung điểm của BC. Qua N kẻ NM vuống góc AB ( M thuộc AC), NP vuông góc AC ( P thuộc AC) a)chứng minh tứ giác AMNP là hình chữ nhật b) Tính độ dài AN và diện tiechs hình tam giác ABC c) kẻ NK vuông góc với MP tại K, AH vuông góc với MP tại HChungws minh AHNK là hình bình hành d) Điểm N ở vị trí nào trên BC thì MP có độ dài
Tam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AEtam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AE
Cho tam giác ABC vuông tại A (AB<AC). Lấy M là trung điểm của BC, từ M kẻ MN vuông góc với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC)
a) Chứng minh tứ giác ANMP là hình chữ nhật
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC
c)Đường thẳng đi qua C và song song với AM cắt MP tại G. Gọi K là giao điểm của tia GA với tia MN. Chứng minh A là trung điểm của GK.
d) Kẻ AH vuông góc với BC. Gọi O là giao điểm của AM và NP. Tam giác ABC cần có thêm điều kiện gì để HO//AB
giúp mik với
mai mình nộp rồi
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vuông góc với AB ( M thuộc AB), DN vuông góc với AC ( N thuộc AC). Trên tia DN lấy điểm E sao cho N là trung điểm của DE
1. Tứ giác AMDN là hình gì ?
2. Chứng minh : N là trung điểm AC
3. Tứ giác ADCE là hình gì ? Vì sao ?
4. Tam giác ABC có thêm điều kiện gì để tứ giác ABCE là hình thang cân