Xét ΔABC có: AB=AC
=> ΔABC cân tại A
Mà AD là tia phân giác \(\widehat{A}\)nên AD đồng thời là đường cao của ΔABC (tính chất)
=> AD vuông góc với BC
Xét ΔABC có: AB=AC
=> ΔABC cân tại A
Mà AD là tia phân giác \(\widehat{A}\)nên AD đồng thời là đường cao của ΔABC (tính chất)
=> AD vuông góc với BC
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
Cho tam giác ABC có tia phân giác của góc A cắt BC tại D a) chứng minh AD vuông góc với BC b Vẽ be vuông góc với AC tại E ,BE cắt AD tại I trên tia AB lấy điểm F sao cho AF = AE ,chứng minh IF vuông góc với AB c)Chứng minh c,i,f thẳng hàng
Cho tam giác abc vuông tại A có ab=3cm,bc=5cm.Tia phân giác của góc abc cắt ac tại d.a)tính ac,ad? b) vẽ tia Cx vuông góc với tia BD tại E và tia CE cắt AB tại F .CM: tam giác abd đồng dạng với tam giác ebc.c) tính tỉ số diện tích của tam giác abd và tam giác ebc
cho tam giác ABC vuông tại A,AB<AC, M là trung điểm của AC. Đường thẳng đi qua M vuông góc với BC và đường thẳng qua C vuông góc với AC cắt nhau tại D.Chứng minh AD vuông góc với MB
Cho tam giác ABC vuông tại A ,AB bằng 9 cm ,AC bằng 12 cm .Kẻ AH vuông góc với BC tại H
a/Chứng minh tam giác abh đồng dạng tam giác ABC và AB mũ 2 = Hb . BC
b/tính BC, ah
c/tia phân giác góc ACB cắt ah tại I và cắt AB tại D Chứng minh CB.CI=CA.CDCD
Cho tam giác ABC vuông tại A, kẻ tia phân giác góc ABC cắt AC tại D. Biết BC = 5cm, AB = 3cm
a) Tính AC và AD
b) Kẻ DE // AB (E thuộc BC). Tính DE
cho tam giác ABC vuông tại A vẽ tia phân giác BD ( D thuộc AC) . Vẽ DE vuông góc với BC tại E. Chứng minh
a, tam giác ABC = tam giác EBD
b, AB =DE
c, BA cắt DE tại H , C/m rằng BD vuông góc HC
d, so sánh AD và BC
Cho tâm giác ABC vuông tại A, biết AB=3cm, BC=5cm, tia phân giác của góc ABC cắt AC tại D.
a. Tính độ dài hai đoạn thẳng AC và AD.
b. Vẽ tia Cx vuông góc tia BD tại E và tia CE cắt đường thẳng AB tại F. CMR: tam giác ABD đồng dạng tam giác EBC, rồi tính tỉ số diện tích của tam giác ABD và tam giác EBC.
c. Tia FD cắt BC tại H, kẻ đường thẳng qua H vuông góc với AB tại M. CMR: MH.AB=FH.MB
Cho tam giác ABC vuông tại A, kẻ tia phân giác cắt AC tại D.
a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.
b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC ∆HDC từ đó chứng minh CH.CB = CD.CA.
c) E là hình chiếu của A trên BC. Chứng minh .
d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.