a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
b: Xét ΔADE và ΔABC có AD/AB=AE/AC
\(\widehat{A}\) chung
Do đó: ΔADE∼ΔABC
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
b: Xét ΔADE và ΔABC có AD/AB=AE/AC
\(\widehat{A}\) chung
Do đó: ΔADE∼ΔABC
Cho tam gíac ABC, trên AB và AC, lần lượt lấy E và D sao cho AE/AC = AD/AB = 1/3
a, chứng minh tam giác ADE ~ tam giác ABC
b, gọi I là giao điểm của BD và EC. Chứng minh ID.IB = IE.IC
Cho tam giác ABC có AB=8cm , AC=12cm. Trên cạnh AB lấy điểm D sao cho BD=2cm, trên cạnh AC lấy điểm E sao cho AE=9cm
a)Tính các tỉ số AE/AD ; AD/AC
b)Chứng minh tam giác ADE đồng dạng với tam giác ABC
c)Đường phân giác của BAC cắt BC tại I.Chứng minh IB.AE=IC.AD
Cho tam giác ABC có AB = 4,5cm AC = 6cm Trên các tia AB AC lần lượt lấy các điểm D và E sao cho AD = 12cm và AE = 9 cm
a) Chứng minh tam giác ACB đồng dạng tam giác ADE
b) Gỉa sử BC = 7cm. Tính DE
c) Gọi Klà giao điểm của BC và DE. Chứng minh tam giác KCE đồng dạng tam giác KDB và góc CBE = góc CDE
cho tam giác abc có ab=15, ac=21cm, bc=30cm.trên ab lấy điểm e sao cho ae=7cm trên cạnh ac lấy d sao cho ad= 5cm. a) chứng minh tam giác abd đồng dạng tam giác ace.b) tính tỉ số diện tích của tam giác abd và tam giác ace
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh
AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số ANABANABvà AMACAMAC . Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN.
Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của
tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB.
cho tam giác ABC có độ dài các cạnh là AB = 9 , BC = 6 AC = 12 trên AB lấy D sao cho AD = 4cm . trên AC lấy E sao cho AE = 3
â, chứng minh tam giác AED đồng dạng với tam giác ABC
b, gọi F là giao điểm của BD và BC .tính FD , FB
Xét tam giác ABC cân tại A có M là trung điểm cạnh BC . Trên các cạnh AB,AC lần lượt lấy các diểm D,E sao cho MC^2=BD×CE.Chứng minh tam giác MBD đồng dạng với tam giác ECM .Chứng minh góc DME =góc ABC
Bài 1 : Cho tan giác ABC cân tại A ,dường cai Ah=9cm và BC=24cm.
a)Tính độ dài AB,AC ?
b)Trên CB lấy điểm M sa cho CM=5cm ,trên CA lấy điểm Nsao cho CN=8cm.Chứng minh tam giác CMN đồng dạng với tam giác CAB
c)MN kéo dài cắt BA tại I . Chứng minh IA.IB=IM.IN
Bài 2 : Cho tam giác ABC có AB=12cm;BC=9cm;AC=10cm;trên tia đối của tia AB, AC lần lượt lấy các điểm D,E sao cho AD=5cm,AE=6cm
a)chứng minh tam giác ABC và tam giác AED đồng dạng
b)tính độ dài đoạn thẳng ED
c)gọi M là giao điểm của BE và CD chứng minh MB.ME=MC.MD
Bài 3 : cho tam giác ABC có AB=6m;BC=10cm;AC=9cm;trên tia AC lấy điểm D sao cho AD=4cm
a)chứng minh tam giác ABC và tam giác ADB đồng dạng
b)tính độ dài đoạn thẳng DB
c)Kẻ DE song song với AB (E thuộc BC ) Chứng minh BD2=BC.BE
cho tam giác abc có ab = 10cm ac = 15cm trên đường ab lấy điểm e sao cho ae = 6cm trên ac lấy điểm d sao cho ad= 4cm Chứng minh tam giác adb đồng dạng tam giác aec