a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: ta có: ΔABD\(\sim\)ΔACE
nên \(\dfrac{S_{ABD}}{S_{ACE}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{5}{7}\right)^2=\dfrac{25}{49}\)
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: ta có: ΔABD\(\sim\)ΔACE
nên \(\dfrac{S_{ABD}}{S_{ACE}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{5}{7}\right)^2=\dfrac{25}{49}\)
Cho tam giác ABC có AB=6cm, AC=8cm. Trên cạnh AB lấy điểm D sao cho AD=4cm. Trên cạnh AC lấy điểm E sao cho AE=3cm. a)Chứng minh tam giác AED đồng dạng với tam giác ABC
b) Gọi O là giao điểm của BE và CD. Tính tỉ số diện tích của hai tam giác OBD và OCE
Cho tam giác ABC có AB=8cm , AC=12cm. Trên cạnh AB lấy điểm D sao cho BD=2cm, trên cạnh AC lấy điểm E sao cho AE=9cm
a)Tính các tỉ số AE/AD ; AD/AC
b)Chứng minh tam giác ADE đồng dạng với tam giác ABC
c)Đường phân giác của BAC cắt BC tại I.Chứng minh IB.AE=IC.AD
cho tam giác ABC. trên các cạnh AB,AC lần lượt lấy các điểm E,D sao cho AE/AC=AD/AB=1/3
a, chứng minh tam giác ABD đồng dạng tam giác ACE
b, chứng minh tam giácADE đồng dạng tam giác ABC
c, giả sử I=BD giao EC. chứng minh ID.IB=IE.IC
cho tam giac abc có ab =15 cm, ac = 21cm, trên ab lấy e sao cho ae = 7 cm , trên ac lay d sao cho ad = 5 cm ,
a) cm tam giac abd đong dạng tam giac ace
b) i là giao diem của bd và ce ,cm IB.ID=IC.IE
C)tính tỉ số diện tích của tứ giác bcde và tam giac abc
Bài 1. Cho tam giác ABC và tam giác MNP đồng dạng với nhau theo tỉ số 13 , 𝐴𝐵=3𝑐𝑚;𝑁𝑃=15. Tính các cạnh còn lại của hai tam giác biết chu vi tam giác ABC là 14cm.
Bài 2. Cho tam giác ABC có AB=3cm; AC=7cm và BC=5cm. Biết tam giác MPN đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác MPN.
Bài 3. Cho tam giác ABC có AB=5cm; BC=8cm; AC=7cm. Lấy điểm D nằm trên cạnh BC sao cho BD=2cm. Qua D kẻ đường thẳng song song với AB và AC lần lượt cắt AC và AB tại F và E.
a) Chứng minh BDE đồng dạng với DCF
b) Tính chu vi tứ giác AEDF.
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh
AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số ANABANABvà AMACAMAC . Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN.
Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của
tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB.
Câu 1: Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho góc ABD = góc ACB
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACB và viết tỉ số đồng dạng
b) Chứng minh: AB2 = AD . AC
- Giúp mình với nhé, mình cảm ơn nhiều
cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a)chứng minh tam giác ABD= tam giác ACE.
b) gọi BF, CM lần lượt là đường cao của tam giác ABD và tam giác ACE. chứng minh tam giác AFM cân
cho tam giác ABC vuông tại A có AB = 15cm, BC = 25cm . AH là đường cao của tam giác ABC .
a. chứng minh tam giác ABC đồng dạng với tam giác BCA
b. tính AC và AH
C. Gọi BF là tia phân giác của tam giác ABC , BF cắt AH tại D.
chứng minh tam giác ABD đồng dạng với tam giác CBF
d. Trên tia đối của tia AB lấy điểm E sao cho AE = 10cm . Qua E vẽ đường thằng D song song BF cắt AC tại K
chứng minh : AK*BH = AE* DH và diện tích của tam giác ABC = 3 phần 5 diện tích của tam giác EBC