Các điểm M(2;3). N(0;-4), P(-1;6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC.
a)Tìm tọa độ đỉnh A,B,C của Tam giác.
b) C/m tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC, M là điểm thỏa mãn
|2\(\overrightarrow{MA}\) + \(\overrightarrow{MB}\)|. Tập hợp điểm M là:
A. Là đỉnh thứ tư của hình bình hành dựng trên hai cạnh AB, AC
B. Đường trung trực của đoạn thẳng cố định
C. Đường thẳng đi qua trung điểm của AB và song song với BC D. Là đường tròn có bán kính bằng BC
cho tam giác abc có trọng tâm là gốc toạ độ O, đỉnh A(-2,2) và trung điểm M của AB có toạ độ M(2,4). Tìm toạ độ đỉnh C
Các điểm M(2; 3), N(0; -4), P(-1; 6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC . Tọa độ đỉnh A của tam giác là:
A. (1; -10) B. (-3; 1) C. (-2; -7) D. (-3; -1)
Cho tam giác ABC, A(4;0) B(2;-4) C(0;-2). Gọi G là trọng tâm tam giác ABC. GỌi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Chứng minh tam giác ABC, tam giác MNP có cùng trọng tâm
Các điểm A'(-4; 1), B'(2; 4), C'(2; -2) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC. Tính tọa độ các đỉnh của tam giác ABC. Chứng minh rằng trọng tâm của tam giác ABC và A'B'C' trùng nhau.
Cho tam giác ABC có A(1;1), B(-3;5) và M(1/2;-3/2) là trung điểm của AC.
a,Tìm tọa độ đỉnh C của tam giác ABC
b,Lập phương trình các cạnh của tam giác ABC
c,Tính khoảng cách từ B đến cạnh AC
Trong hệ tọa độ Oxy, cho tam giác ABC có C (-2; -4), trọng tâm G(0; 4) và trung điểm cạnh BC là M (2; 0). Tổng hoành độ của điểm A và B là?
A. -2
B. 2
C. 4
D. 8
Câu 1: Cho tam giác ABC có A(3,2); B(4,1) và C(1,5).
a/ Tìm tọa độ trọng tâm G của tam giác ABC.
b/ Tìm tọa độ điểm D để ABCD là hình bình hành
c/ Tìm tọa độ sao cho
Câu 2: Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. I, J là trung điểm của MP, NQ. Chứng minh rằng: