Cho tam giác ABC có góc A tù. Cho các biểu thức sau:
(1) M = sin A + sin B + sin C
(2) N = cosA. cosB. cosC
(3) P = cos A 2 . sin B 2 . c o t C 2
(4) Q = cotA.tan B.tan C
Số các biểu thức mang giá trị dương là:
A. 1
B. 2
C. 3
D. 4
Cho tam giác ABC. Tính P = sin A. cos( B+ C) + cosA. sin(B + C).
A. P = 0
B. P = 1
C.P= -1
D. P = 2
Cho tam giác ABC. Tính P = cosA. cos(B + C) – sin A. sin (B +C).
A. P = 0
B. P=1
C. P = -1
D.P = 2
Chứng minh rằng trong tam giác ABC có:
a) tanB = tan( A+C)
b) sinC = sin( A +B)
c) cos A = -cos (B+C)
Cho A, B, C là 3 góc trong tam giác. Chứng minh rằng:
1, sin A + sin B - sin C = 4sin\(\dfrac{A}{2}\) sin \(\dfrac{B}{2}\)sin \(\dfrac{C}{2}\)
2, \(\dfrac{sinA+sinB-sinC}{cosA+cosB-cosC+1}=tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\) (ΔABC nhọn)
3, \(\dfrac{cosA+cosB+cosC+3}{sinA+sinB+sinC}=tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\)
GIÚP MÌNH VỚI!!!
Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?
A. CosB + Cos C = 2 Cos A B. Sin B + Sin C = 2 Sin A
C. Sin B + Sin C = \(\dfrac{1}{2}SinA\) D. Sin B + Sin C = 2 Sin A
rút gọn biểu thức P= sin(π/2-alpha)+cos(alpha+5π) a0 b 2cos alpha c 2 sin alpha d1
Rút gọn biểu thức A= sin x + sin 2 x + sin 3 x cos x + cos 2 x + cos 3 x
A. tan4x
B. tan 3x
C. tan 2x
D. tan x + tan 2x
Rút gọn biểu thức : A = sin( a - 160) .cos( a + 140) – sin( a + 140) .cos(a - 160), ta được :
A. cos2a
B. sin a
C. -0,5
D. 0
1. Cho tam giác ABC có a \(=4\sqrt{2}\), c \(=10\), B\(=45^0\). Tính b, cos C, S, R, sin A, ha